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N encompassing as specific cases many mathematical functions
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'l',:'_: and nearly every continuous statistical distribution defined
over positive x. A general procedure is developed to esti-
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?\h fit to a set of data. The technique creates a system of

nonlinear equations from the method of moments and uses

L2 Powell's gquasi-Newton hybrid algorithm to solve the equa-
o2
s

, tions. A computer program, which can accept both raw data
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“.j process. Several new theoretical results are also

~
':,f presented.

o

iy

YA
b7,

NG

oyt

2f:
\'A

=

N
N
=

3

A3

r-

b

.,:

Q.

3

o viil

- et et et an s
AR RS IR

LS N Wy € Y gt WMy YT (LY WL,
SN N L \*"'B\L'.-'j

NPT Y



AN APPLICATION OF THE H-~FUNCTION

TO CURVE-FITTING AND DENSITY ESTIMATION

I Introduction

Analysts cannot effectively work with raw data. Before
statistical analysis can be accomplished, data must be sum-
marized in a convenient form. The most common way of
achieving this is to fit data with the best function or
statistical distribution. For example, if the analyst wants
to model the time between arrivals to a queuve for a computer
simulation, he infers the true probability distribution from
a random sample of observations. This process of statis-
tical inference usually involves estimating both the form
and the parameters of the distribution. Only after the best
form has been found can the analyst begin to use standard
statistical tools such as confidence intervals and
hypothesis tests.

Background

Currently, analysts use the following procedure when
attempting to fit mathematical functions or statistical
distributions to data:

1. Plot the data,

2. Hypothesize a particular type of function,

3. Estimate the parameters, and

4. Test for goodness-of-fit using an appropriate test.

s .'.1
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b
fj This procedure has two major shortcomings. First, the ana-
:! lyst must test each specific function separately. For exam-
{: ple, one must perform two individual tests if the data is
‘;5 suspected of being from either a gamma distribution or a
w half-normal distribution. Second, several distributional
;;j forms and many combinations of parameters may fi* the data.
fg In the same example, if both goodness-of-fit t its fail to
Eﬂ reject the hypothesized distribution, then ne her can be
.ﬂ eliminated as the true population distributio- Further-
'ﬁ more, there is no chance of finding the distribution which
% best fits the data unless all possible distributions are
;i tested.
:i To solve these problems, analysts can use a general
& special function, called the H~function, because it includes
:; many mathematical functions and statistical distributions as
'ﬁ special cases. An analyst could simultaneously consider the
| special cases by simply fitting the H-function to the data.
N Although this idea seems logical, the H-function has never

been applied to the current procedure for curve-fitting

because of the newness and difficulty of the H-function

i theory.
i Objective
N The theory has progressed enough for an application of
B, e
'E the H-function. Special theorems allow the application to
ii curve-fitting without a full understanding of the complex H-
o function theory. Therefore, the overall objective of this
Al
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j{: research is to develop an efficient and effective method to
N

e .

{ apply the H-function to the current procedure for curve-
‘ﬁf fitting and density estimation. To reach this objective,
:Eﬁ two main goals need to be accomplished.

) First, a method of estimating the parameters of the H-

:;: function has to be found. The parameters uniquely define
NN
el the H-function and therefore, with knowledge of the param-

) eters, the H-function can be explicitly evaluated and

‘}3 graphed.

NN
jﬁ At this time, a subtlety needs to be discussed. The
L; analyst may also know that the data comes from a statistical
0

3ﬁ& distribution. Because the method estimates parameters based
h ".

PO
a@; on a finite number of data points, the parameters that
"

L appear in the H-function may not exactly define a statisti-
}$: cal distribution. For example, a parameter required to be 1
« sl‘

g
o for a chi-square distribution may be 1.0l when estimated.
¥

' The other estimates may also be slightly off.

”

'

e However, the estimates do not need to be reevaluated.

,f& The H-function found will fit the data better than any
;, forced chi-square distribution. If necessary, the analyst
ﬁ% should think of the unnamed H-function as a nearly chi-
-

o square distribution and proceed with further analysis given
;' this new information.

25
:f The second main goal is to determine the efficiency and
\‘:-

‘2§ effectiveness of the H-function curve-fitting procedure.
L]

’! This part of the research is somewhat subjective as can be
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seen from the following definitions of efficiency and
effectiveness.

Efficiency is measured in terms of not only the number
of separate tests required, but also the difficulty of each
test. Because the H-function is a general function, the
application of the H-function reduces the number of separate
tests required. Since the H-function method can be imple-
mented on the computer, curve-fitting will not be difficult.
Therefore, the new technique should be efficient.

Effectiveness is measured in terms of the ability of
the method to find the "best" function. Analysts have many
techniques they use to compare functions in order to deter-
mine which one "best" fits the data. All involve some
measure of the error between the proposed function and the
data. Examples include the absolute distance, the maximum
absolute distance, and the square of the distance. Because

of its common use, the estimated mean squared error will be

our criterion for measuring the closeness of the H-function
rf; to the data. A more formal definition follows in Chapter 6.
o Three of the problems which influence effectiveness are
&3 the sensitivity to the number of data points, the inaccuracy
k; of higher degree moments, and the necessity for an initial
ng guess of the parameters. The size of the sample is a prob-
s’
%} lem for all statistical methods. For the more common cases,
; only four to six moments have to be found. The third prob-
L)

lem, involving the initial guess, can be controlled by
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i
gbr checking it against a set of H-function convergence condi-
;J tions. Effectivenes. should increase because the nonlinear
;ﬁ; solution method results in accurate convergence most of the
?;i time.
v Scope
N
_ﬁa The H-function is only applicable for continuous func-
?g tions defined over positive values of x. This is not as
o serious a restriction as it first appears. Methods exist
A§§ which can fold a symmetric distribution and move its axis of
53 symmetry. Therefore, distributions like a normal or Stu-
S
35 dent's t can be evaluated with ‘e H-function as half-normal
';i or half-student. Such transformations are not the subject
ﬁ;ﬁ of this thesis. Distributions such as the half-normal will
-\J only be analyzed directly.
;ﬁ The H-function also can be designated with a certain
fg order. Order is defined as the sum of the number of gamma
o terms in the definition of the H-function. This definition
:EE will be seen later in Chapter 2. For programming purposes,
'sﬁ the highest order covered in this effort is five. Again,
" this is not a serious restriction. 1In fact, most known
.
Sﬁ statistical distributions can be described by an H-function
;21 with order one or two. For more advanced mathematical
= functions such as arcsin or arctanh, the H-function still
§ only needs to be of order four.
N
?’ 5
1
o
o
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Qverview

Chapter 2 contains a general discussion of the H-
function including the definition, some special properties,
and many special cases. A deliberate attempt is made to
avoid discussion of as much of the complex theory as
possible.

Chapter 3 presents the results of the curve-fitting
literature review. It concludes with the selection of the
appropriate parametric curve-fitting method to use with the
H-function, the method of moments.

The method of moments produces a system of nonlinear
equations that needs to be solved. The system is nonlinear
because each equation involves products and quotients of
gamma functions where the unknowns are in the arguments. In
Chapter 4, a historical survey of nonlinear solution tech-
nigques is given. The technique known as M.J.D. Powell's
hybrid algorithm is selected. This algorithm is already
available on the AFIT CDC Cyber 750 computer in an IMSL
routine called ZSPOW.

Chapter 5 discusses the development of a computer pro-
gram that accomplishes the main objective of the research.
The program estimates the parameters of the H-function from
a set of univariate data or paired data after the data has
been converted to moments. Once the parameters are esti-
mated, the H-function can be explicitly evaluated and

graphed. The H-function is evaluated by placing the
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EE estimated parameters into a program which has the capability
;3 of determining the value of the H-function for any x > 0
?. {7:Appendix B]. The H-function will be evaluated at the
§ same X values as the data points. This will be the longest
i chapter since it summarizes the complete methodology of the
2 thesis effort.

%\ Chapter 6 describes graphs which contain the estimated
:? H~function, the actual data points, and the measure of the
g fit of the H-function to the data. Also, this chapter
;3 summarizes the measure of fit for each graph in tabular
Q‘ form.

. Finally, we reach conclusions about the efficiency and
; effectiveness of the H-function curve-fitting procedure.
N

3 Also in the final chapter, new findings are highlighted and
y further studies are recommended.
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ﬁ? II The H-function
K Definition

3 The H-function is the most general special function,
f' encompassing as special cases most of the other special
N
' functions and elementary functions of mathematics and nearly
7y
e every continuous statistical distribution defined over
L]
£J positive x.
, The H-function is defined by either of the two forms:
;
i m n
2 P g

{(bjl Bj)}l j'_'ll"'Oq,]
2 'rr [ (b;5+B48) T [(1-a;-A;s)

R I | 1=1 z™S ds

T

‘ 2mi

Cy 'rr [(a;+a;s) Tr |"(1-b -B4s)

4, i=n+1 j=m+1

3 (2.1)
£ n

ﬁ

'TT [((by-By4s) Tr [((1-a;+A;s) .

. = _1 J=1 i= z® ds
e 2m

" c, -rr [M(aj-ays) Tl‘ [(1-by+Bys)

s i=n+l j=m+1

_ where z and all aj and bj are real or complex numbers, all
%

35 A; and By are positive real numbers, and m, n, p, and q are
o

"j integers such that 0<m<gq and O¢n<p. Empty products are
P defined to be unity (1). The path of integration, C,, is a
, contour in the complex s-plane from w-iw to w+iw , such

e
< that all Left Half-Plane (LHP) poles of 'r|" [Mo5+Bys)  1lie

i=1

"'1'-1!o-\
+



to the left of C; and all Right Half-Plane (RHP) poles of

n
TT[(1-a; - Ays) lie to the right. Similarly, C, 1is a
i=1

contour running from v-iw to v+iw , such that all RHP poles

m
of TT [“(bj - Bjs) lie to the right of C, and all LHP
j=1

n

poles of TT[ (l-a; + A;s) lie to the left (26:2-3; 37:195;
i=1

7:32).

We will use the first equation in Eq (2.1) as our
definition, although the two definitions are equivalent.
When there is little chance of confusion, we will often
abbreviate the H-function as either

m n m n
H (z) or H [23{(ail Ai)}7 {(bjr BJ)}J-
P g P 4a

We will define the order of an H-function as p+q. This
represents the number of pairs of parameters {(ai, Ai)} and
{(bj, Bj)} where each pair represents a gamma function in
the integrand in Eq (2.1).

Converdgence Conditions

For our purposes, the H-function defined in Eq (2.1) is

valid if (26:3; 7:72):
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7] and a C; line can be placed between the LHP and RHP poles.

L0 More stringent conditions are developed later in Chapter 5
when D=0. When D<O, the H-function is not defined because

?ﬁ the infinite sum which can represent it does not converge.

G Properties

Sty Although we will rarely use the following properties in
-

A9 this thesis, we will state them for the reader's future use

(37:196; 26:4; 7:33-34):

I Reciprocal Property.

) s:.‘u mn 1

. H [;3{(3i: Ai)}: {(bj' Bj)}]
P g

\{w nm

SE = Hq 0 Cz:{(1-by, By)}: ((1-a;, A;)}]

o Argument to a Power Property.

S5y ma
v¥ H [z =[(ai: Ai)}; {(bj' Bj)}]
P g
L m n A B
é: = % H [z:{(ay, —:')]7 {(by, —2)}3, where >0
R Pa
_*, nm B. A
::::; = -]:C. H [23{(1-bj1 "'—cl)}7 {(l-ail -__cl:')}]l
e qp

]
T where c¢<«<0

Multiplication by an Argument to a Power Property.

s m n
i 2 H  [z:((a;, Ay)}; ((by, B4)}]
- P g

) 10
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jeze

SN

4

5£ﬂ m n

3 = H [ZS{(ai‘l‘AiC: Ai)}: {(bj+Bjc' BJ)}]

‘ P g

X

& Reduction Property. |
y ‘

{*3 If a pair of "A" terms and a pair of "B" terms in an H- ‘

|

by function are identical and one is in the numerator and the 1

\

§” other is in the denominator, then it is equivalent to an H-

ﬂ; function with a lower order. Specifically (26:4; 7:34-35):

5 mn

‘ H [zz{(ai:Ai)}i (bllBl)l Y (bq-l'Bq-l)' (al'Al)]

Y, P4q

o

» m n-l

% = H [23(32'A2): ceey, (apaAp)f {(bJ'B])}]

; P-1 q-1

¥

e

i

A .

B provided n>0 and g>m.

£ 7

Ead mn

::J H [23(310A1)' co ey (ap—l'Ap-l)' (bl’Bl)'. {(bJ,BJ)}]

) P q

. m-1 n { }

e, = H [23 (aiaAi) H (bZle)l RN} (b B )]

3 ool qel q'Bq

e ey

provided m>0 and p>n.
We also found another way in which the H-function can

reduce to one of lower order. If any A; or Bj is close

X

enough to zero, that gamma term in the integrand of Eq (2.1)

S rathnd Ml [
'F s rLLd

is essentially a constant. Thus,

e
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!‘i\’
g’,.? mn m-1 n

A ;\ H [Z] ~ F(bl) H 1[zzt(ailAi)}7 (bzlaz)l

N P4 p g-

. eees (b.,B)1

}\: ! q’'"q

LN

5984 for B;%0 and m21.

e

400 mn 1 m n

. H {z] =~ H [zzi(aiIAi)}; (bllBl)I

,.:gt:; P q [(1-bg) b g-1

:.‘: {:

'.z.:}? oo o (bq-l 'Bq_l )]

’;"\.

3 for B,~0 and m<qg.

N d

SN

zz.‘&

i., m n - m n-1

m"* H [z] = (l-al) H [zz(azoAz): eees (AL);

- P q p-l 4q prlp

,.J_I:,,’ {(b',B‘)}]

g{;j 3'73

‘;,:'j ~

28N for A,~0 and n21.

:.'?' m n 1 m n

H [z] =~ H [z:(a;,Ay)) ocesr );

) ~ 174*1/¢ ’ -1 -]l/7
N Pq [M2p) "p-1 g s

5 A

ey

i for A_~0 and n«<p.

10 P

"y Therefore, there are two ways in which the H-function
».7*“ can reduce to a lower order. Gamma terms in the integrand
%

.53 of Eq (2.1) could cancel in the numerator and denominator or
' they could reduce to constants. These reduction properties
.

N could be useful in allowing a less restrictive assumption of
1288

*: the values of m, n, p, and q when fitting the H-function to
"k‘ data.
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- Special Cases
A |
2 Integral Transforms.
i The Laplace (Lr) and Fourier (Ft) transforms of an H-
i
;Q' function are also H-functions (37:199-201; 7:35):
3
348
: m n

- L. {H (cz)
o P q

i L. m n+l o

- == H =:(0,1 a;, Aj;)l}; bs, Bj

N

N Using the property of multiplication by an argument to a

fx power, this becomes:

3 L .M n+l c

| = -c-H 1 [-I—_:(l:l)c{(ai"'Ai: Ai)}7 {(bj+Bj; BJ)}]

. pt+ q

~

By the reciprocal property, this can be rewritten as:

4y

3 L p¥l m

A = -E H [%3[(1"b3'Bjo BJ)}; (Oll)l {(l-ai‘Ai, Ai)}J

q ptl

i m n

‘. F. { H (cz)

] P g

..P

1 n+l m it

= =~ H ==:{(1-bs-B;, Bs)}l: (0,1), {(1-a;-A;, A;)}]

S c q p+l 3 7J J

;I Mathematical Functions.

.

. The following elementary mathematical functions can be

£

‘

’: expressed as H-functions (26:10,151-152; 7:39-41,124):

-

-

v, 13 |
Cad :
-~ i
¥ |
: |
v, S A AT (IO IR IRT N SIS A R S I g ARy R RNy RO AR S TR TP AR S K et ‘ﬁ_;i,;-:;




10
e"% = H [z:;(0,1)]

zPe~% = H [z:;(b,1)]

= H (z:;(b,B)]

SeoN 2P = H [z:(b+1,1); (b,1)]

's"‘!{ 1 0
SRS zP (1-2)*@ = [(a+l) H [z:(a+b+1,1); (b,1)]
11

P, b a 1ot
o z° (1+z) = H
N @) 7}

\&\ 10
A sin(z) =‘2ﬁ H

{z:(b-a+l,1); (b,1)]

0 2

SIS i = -1 iz, . (1.1 1
<, SInh(Z) -—2—- H [ '0(302)1 (012)]

ot . 2,01y, (L1

) COS(Z) EZH [5.,(0a2)' (212)]

cosh(z) = ﬂ; H

2
y - - i (1.1 1y, (11 1
.}';} arcsin(z) o H [1z.(1,_2.), (1,5), (_2,_2), (o ._2)]

A8

2
. - (1.1 1y, (1,1), (0,1
arcsinh(z) H [z.(l,i), (1,5.), (2.2) (o 2)]

1
ww 5 5
1

[ 2K,

L A0

<
LN Y

Ay

a'e ala L

[/

2
-1 cly, (B (51, (ol
arctan(Z) yy H2 5 [Z.( 12)1 (212 H (2'2)' ( 12)]

? “’A

PAY Y

ey
"'r."-

o0 14
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e

&

TR
s l’%n’

= 1 . 1 11y, (11 1
arCtanh(z) - z H2 2 [lz‘(ll—z-)l (-2—15): (—2-1-2-)1 (005)]
1 2
log(1%¥z) = v [*z:(1,1), (1,1); (1,1), (0,1)]
22
20
lOg(Z) = | -H Ezz(lll)l (111)7 (Oll)l (Oll)] O<Z£l
2 2
0 2
H [23(111)1 (lll); (Oll)l (Oll)] z>1
2 2

It should be noted that the formulas given above are
not consistent with those in Mathai and Saxena for arc-
sin(z), arctanh(z), and log(ltz). There were apparently
typographical errors in their book. We believe that the
correct formulas are given above. We verified these as the
correct formulas by summing the residues of the H-functions
given above. In each case we obtained the correct infinite
series. The outlines of these proofs are provided in
Appendix A.

We were able to prove a generalization to the loga-
rithmic function log(z). It is given below and the proof is

outlined in Appendix A.

2 0
log(z) = -uz H [zg(llu)l (llu)7 (olu)l (Oou)] O<Z$l
2 2
0o 2
w2 " (z:(1,u), (1,u); (O,u), (O,u)] z>1
2 2

15




A similar generalization applies to the power function

zP. It is stated below and the proof is a special case of

the proof for the generalization of the Power Function
probability density function (p.d.f.) in Appendix A.
10
z” = uH [z:(ub+l,u); (ub,u)]
11
The H-function also includes as special cases many
advanced mathematical functions. Since these will not be
dealt with in this thesis, they are provided for the
reader's benefit in Appendix B.

Statistical Distributions.

Consider a continuous random variable X whose

probability density function (p.d.f.) is given by

m n
fX(x) = k H (cx) cx € 8§
P 4
Q otherwise
o0
where k and ¢ are constants such that .[ fx(x) dx = 1 and
-0
m n
S is a subset of the positive real line for which H (cx)
P4

is convergent. Then the random variable X is said to be an
H-function variate or a random variable with an H-function
distribution (37:200; 7:84).

Many common statistical distributions are special cases

of the H-function distribution. These include (37:164, 202-

207; 7:85-87,93-94):
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Gamma p.d.f.

oy
[
(1))

f(xle,8) = 9 x9-1 g-0x
(o)

! ’A’.’. ’

4

10
=98 § [@x:;(6-1,1)] x>0
[(e) o1

P
AR

’l .l s
B
DRy e B SR Y

Exponential p.d.f. (Gamma p.d.f. with e = 1)
(Weibull p.d.f. with 6 = 1)

4 f£(xlg) = ge~0%

1 10
N = @gH [@x:;(0,1)] X >0
o1l

g > 0

. Chi-Square p.d.f. (Gamma p.d.f. with 6 = g' and 9 = =)

(NI

" f(xle')

|
—
N

-
O

= [2 F(%’)J'l H tgmg'-l,m x>0

(o}
—

r

~

- '

, o > 0
b

- Weibull p.d.f.

]
()]
[
"

¢ )

!

=
o

i

[

»”

]
(]
e of
=
[>]
»
(1]
e
o~
.—l

[}
1
L
L
—
»
v
(@]

e'g > O
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. Rayleigh p.d.f. (Weibull p.d.f. with & = 2)

2
£(x|9) = 20x e~9%

10
=V6 H  [V0x::(3.2)] x>0
01 2
@ >0
‘g: Maxwell p.d.f.
’:.q.
N x2
S 2
£(xle) = 4 x2 e ®
- o34
i 10
E =2 85 [%;(1.D)] x>0
i eviv 01 © 2
N
o e >0
2
. "—-—2
éi £(xle) = 2 e 2°
> y2re
.:’-,
% 1 % 1
; = __-_H [—2—x:;(0,2)] X >0
V2ne o1 Ze 2
','..: 6 > 0
2
oy
Y Beta p.d.f. of the first kind
Z f(xle,g) = L(8+8) yo-1 (j_x)@-1
(x16:9) = rreyraY
2
e 10
b = M H (x:(e+0-1,1); (e-1,1)]
., Me) 11
’n 0 <x <1
ﬂ
-
N e, >0
e,
Y4
p)

@
]
..

* '

%
y

& 18

Y

"
4
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Power Function p.d.f. (Beta p.d.f. with @ = 1)

f(xle) = ex®1

10
= OH [x:(e,1); (€-1,1)] 0O < x <1
11

e >0
Uniform p.d.f. (Beta p.d.f. with @ = ¢ = 1)
(Power Function p.d.f. with @ = 1)
f(x) =1
10
= H [x:(1,1); (0,1)] 0 < x <1
11
Half-Cauchy p.d.f.
f(xle) = — 28 __
ﬂ(92+x2)
1 11 X 1 1
= - H =:{0,=); (O,= >
5n [9 ( .2) ( .2)1 x >0
11
8 > 0

Half-student p.d.f.

2 [(&tl)
£(x|0) 5

J

2
e X
&F (9 1+ X))

11
—1 u [X:(16,1y; (o,L)3 X >0
) 11 v8 %2
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F p.d.f.

e 0 o
o+g, £ 8 o,
(57 o2 g2 2

£(xle,0) 575

2
e gy (ex+d)
r(i) r(f)

11
= —=2 1 [&%(-£1); (-] x>0
8| (= =
MSINE 11 |
e, @ >0 |
Beta p.d.f. of the second kind
' o-1
£(xle,0) = (0/0)® [(o10) x77
[(e)(e) (14+2%)
11
=9 ___u [gfz(-ﬂ,l); (e-1,1)] X >0
e[(e)[(8) 11 ©
e, 8 >0
These results are summarized in Table I (8:300).
We were able to prove a generalization to the above
formulas for the Power Function p.d.f. and the Uniform

p.d.f. This generalization was not previously known and the

proofs are outlined in Appendix A.

Power Function p.d.f.

f(x|e) ox®-1
10
= ueH [xs(u(®=1)+1,u); (u(e=-1),u)] 0 < x < 1
11
e,u > 0

20
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Uniform p.d.f. (Power Function p.d.f. with & = 1)
f(x) =1
10
= uH [x:(1,u); (O,u)l 0O <x <1
11
u>o0
We were also able to represent the Pareto p.d.f. as an

H-function. This is another new finding not previously

known. Again, the proof is outlined in Appendix A.

Pareto p.d.f.
f(xle) = ex~©-1
o1
=6 [x:(-8,1); (-6-1,1)}] x> 1
11
e > 0

This p.d.f. can also be generalized as above. The

proof of the result is given in Appendix A.

pPareto p.d.f.

f(xle) = ex~©-1

o1
ueH [x:(1=u(l+8),u); (=u(l+9),u)] x > 1
11

o,u > 0

The Bessell p.d.f. and General Hypergeometric p.d.f.
can also be expressed as H-functions. These are listed in
Appendix B since we won't use them in this thesis. However,
we will use the Bessel p.d.f. to verify and validate our

computer program.
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If a random variable has a p.d.f. that can be expressed
as an H-function distribution, then its cumulative distribu-
tion function (c.d.f.) can be easily written as one minus
another H-function. Specifically, if

m n

f(x) =k H Cex:{(aj, A;)}; ((by, By},
Pq

then (37:243; 7:102-107):

m+l n
H Cox:{(aj+a;, A5)}, (1,1): (O,1),
p+l g+l

F(x) =1 -

Q=

{(bj+Bj' Bj)}]

Another powerful characteristic of H-function variates
is that products, gquotients, and rational powers of indepen-
dent H-function variates are also random variables with H-
function distributions. The exact formulas are lengthy and
will not be presented here. The reader is referred to
Springer (37:207-219) or Cook (7:90-92). 1In his disserta-
tion, Cook presented a computer program that will evaluate
these combinations and graph the p.d.f. and c.d.f. of the
resulting H-function distribution.

Mellin Transformation and Moments

The Mellin transform (Mg) of an H-function is given as

(37:198-199; 7:35):




m n

Trr(bj + BJS) TT r(l~al - AlS)

Mg{H(cx)} = _j=1 i=1 =
P q
TT[(a; + Ays) TT F(l-bj - Bys)
i=n+l j=m+l

For continuous random variables defined over positive x, the

moments about the origin are (37:201-202; 7:29,108-109):

- ]
M. = E(XF) = [ xFf(x)dax
o

= Mr+1{f(x)}

Therefore, the moments of the H-function distribution are:

m n mn
M, = Mryy {xH (cx)} = KMy 4y {H (ex)} = X I(r+l)
P q P q crtl
r=0, l, e
where
m n -
T (b; + B5s) TT (1-a; - A;s)
I(s) = j=1 By + B i=1 vt

- (¢ ) - M(1-b )
T aj + A;s T -b, - B.is
i=n+1 . j=m+1 J J
The above formula is especially useful for finding the
constant k in an H-function distribution. Using the fact
that the zeroth moment of a statistical distribution must
equal one,
m

n
gy =1 =M {kH (cx)} = %I(l)
Pq
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or (7:109):

P q
[(a; + A;) (1-bs - Bs)
K= ¢ =c deme P70 j=TmTi-lr ;]

:j'lli [(by + By) :__TI; M(1-a; - ay)

The moments of H~-function distributions carry their
usual statistical meaning. For example, the zeroth moment
is the area under the p.d.f. over the appropriate range.
The first moment is the mean of the distribution. The
second moment is a function of the mean and variance of the
distribution.

We could also define moments of a mathematical function
f(x) defined over positive x as:

@
[T =f xF £(x) ax (2.2)

When the function can be represented as an H-function, these
moments could be found by the same formula as for statisti-
cal distributions. However, they would not always have the
statistical meaning. The first moment of a function could
not always be interpreted as the mean or balance point of
that function. The definition in Eq (2.2) will be useful in
Chapter 5 when we fit mathematical functions to data using
the method of moments.

This concludes our discussion of the definition, prop-

erties, special cases, and moments of the H-function. We
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next examine procedures to estimate the parameters of the H-
function. Because the H-function includes both mathematical
functions and statistical distributions as special cases, we
needed to find a method of estimating the parameters of the
H-function that would be applicable for both curve-fitting
and density estimation. Nearly every method we found was
formulated for density estimation, although some could also
be applied to curve-fitting.

It appears that when trying to fit mathematical func-
tions to data, analysts usually plot the data points and
hope to find a pattern in the points that is recognizable as
a special mathematical function. If the points do not
exhibit a pattern, the analysts could still approximate the
n data points with a polynomial of order O to order n-1.

Because of the lack of techniques for fitting mathema-
tical functions to data and the abundance of techniques for
density estimation, we concentrated our literature review on
methods of density estimation. As noted previously, in some
cases, these methods may also be used to fit mathematical

functions to data.

26




CAACIAY AT RO N i S Al P A

ol
}f II1 Methods of Density Estimation
N
2
! Methods of probability density estimation can be gener-
“? ally classified as parametric or nonparametric. Parametric ‘
.
:ﬁ density estimation techniques usually assume that the form i
4y 3N :
& |
of the distribution from which the data were taken is known.
Lud
4
3o Alternatively, they may estimate the form or class of the
~
A
> oy . X
25 probability density function (p.d.f.) from the data. 1In
contrast, nonparametric density estimation techniques are
‘Q not concerned with the form of the distribution, before or
$Q,‘.
AT after the data are taken.
0l
v Generalized Families
L4
N
ﬁ& Although parametric approaches generally require an
o
o’
:ﬁ assumption of the form of the unknown p.d.f., that assump-
>
. tion is not always as restrictive as it appears. There are
~
o
N several generalized families which include many densit
o~ Y
AN
:: functions as special cases. Assuming that the sample came
~
from a generalized family is not nearly as restrictive as
P
:ﬁ assuming it came from a particular distribution.
-’.‘.
J L]
o The emphasis in the generalized approach is to leave
e
- the functional form of the unknown density as unspecified as
.
EF possible and allow the data to indicate which special case
Qﬁ of the family gives the best fit (41:13). This approach
-~ permits model and parameter estimation to be considered
)
'ﬁk simultaneously. This seems to be beneficial because of the
58
‘h.l. . I} .
?J close relationship between a model and its parameters
- (12:1).
.
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£ .
o
oS
fﬁ: One of the best~known generalized families was proposed
{. by Karl Pearson. This family, as it turned out, included
198
AN
el many of the more common continuous univariate probability
\.':-
20 densities as members (41:5).
»
Pearson's system of frequency curves is generated by
; solutions to the differential equation
Ve y = X+a 5 y
" bo+b1x+b2x
N
5,
:;: where a and the b's are constants (9:248-249; 37:255). The
=
it system consists of 12 types of curves and a set of rules for
P S
'{: determining which curve best fits the data based on the
3f first four moments (37:255). A fairly detailed development
5. of the system is given by Elderton (13:38-127).
LY
%? Special cases of the Pearson system of curves include
L4
éﬂ the normal distribution, the chi-square distribution, Stu-
‘.\-‘
]
. dent's t distribution, the beta distributions (first and
iy . . .
NN second kinds), and the Pareto distribution (9:249; 41:8).
)
.2 The gamma distribution can also be obtained after shifting
e
] the origin and making a transformation (41:9).
"N
fﬁ Another generalized family is the generalized gamma
LY
o
W family defined by Stacy (38). It consists of probability
i density functions of the form:
%
¢ 5 :
% £(xla,d,p) = (af  ga-1 o (x/a)
L &)
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where a, d, and p are parameters. This family includes the

P

gamma, Weibull, Maxwell, and standard normal distributions

A

: & “l .‘l ..l ‘.l

as special cases (38:1187). Of course, the exponential and

g

chi-squared distributions are also included in the family
since they are special cases of the gamma distribution.

Similarly, the Rayleigh distribution, a special case of the

o Weibull distribution, 1is also in the generalized gamma fam-
\ .
L]
\ ily. This family is equivalent to the first order H-
N
S 10
e function distribution kH (cx).
.
S 01
WSl
3 Recently, Ramberg et al (33) proposed a four-parameter
:: probability distribution whose percentile function R(p) is
e
ﬂ; based on the generalization of Tukey's lambda function:
' A A
i) 3 4
. R(P) = M\ + Ip - (1-p) 1 o psl
. A - -
o 2
‘ : The density functions related to this percentile function
ﬁ can take on a variety of shapes, depending on the values of
!
o the A;. This distribution can represent, or at least
=2 approximate, the gamma, Weibull, normal, log-normal, and
\§ Student's t distributions (33:203, 206). The proposed dis-
o~
\‘:
:2 tribution yields a good approximation to the data using the
o first four moments.
:3 Clearly, the H-function is also a generalized family
A
fi since it includes as special cases nearly every named con-
@
= tinuous probability density defined over positive x. The
>
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.ﬁ; only named continuous densities that have not been shown to
iti be H-functions are the log~-normal and logistic distribu-
L tions. On the other hand, no one has been able to show that
these distributions are not H-functions.

As seen in Chapter 2 and Appendix B, the H-function
- also includes many named functions of mathematics as special
;? cases. Thus, the assumption that the data came from an H-
E‘ function could hardly be considered restrictive.
:& Still, that assumption makes fitting an H-function to
ii data a parametric procedure. 1In this case, the assumed form
'ﬁ: of the distribution is an H-function with particular values
:i for m, n, p, and q. Estimating the parameters of that H-
gg function would simultaneously consider all of the densities
%j which are special cases of the H-function and determine the
\; H-function which best fits the data.
'f; Parametric Estimation Techniques
2 Since the form of the distribution is assumed to be
L known in parametric density estimation approaches, the prob-
“,
SE lem reduces to finding point estimates for the parameters of
f: the p.d.f. Before discussing the various approaches to
£§ parameter estimatior, however, we need to define certain
EE desirable properties of estimators.
. An estimate, é, of an unknown parameter, 8, is said to
:Ei be unbiased if E(6)=e for all e. "This implies that the
’i; sampling distribution of é is centered at the parameter o.
,‘
-,
2
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That is, an unbiased estimator © 1is equal to & on the
average" (3:388).
If the estimate & converges in probability to &, it is

said to be consistent. Formally, if lim Pr{le-el<¢}=1 for
n-» o

any £>90, then e is a consistent estimate of & (18:235-236).

Consistent estimators are not necessarily unbiased and
unbiased estimators are not necessarily consistent. Thus,
neither property implies the other. But a consistent esti-
mator with a finite mean value must tend to be unbiased in
large samples (23:5).

An efficient estimator of © is an unbiased estimator
with minimum variance among all unbiased estimators. A

measure of the efficiency of the estimator o, is
efficiency = __rl_

where V(é) is the minimum variance of all unbiascd esti-
mators and V(éa) is the variance of éa' "An efficient
estimator is sometimes called a minimum variance unbiased
estimator" (3:388). An asymptotically efficient estimator
is an estimator that becomes efficient as the sample size
increases to infinity.

With these properties defined, we can proceed to

discuss the various approaches to parameter estimation.
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Method of Moments.

The method of moments was proposed by Karl Pearson to
approximate data with a curve. This method involves
equating the moments of the data with the moments of the
distribution, creating as many equations as there are param-
eters to be estimated. The estimates are then obtained by
solving these equations for the parameters (9:497-498;
13:12-37; 29:274-276). "This method often leads to
comparatively simple computations in practice" (9:497).

However, one limitation of the method of moments is the
unstable nature of the higher moments calculated from the
data. If there are many unknown parameters, then higher
order moments will be required to solve for the parameters.

Karl Pearson has shown that "we might
easily on a random sample reach a 7th or
8th moment having half or double the
value it actually has in the general
population. Constants based on these
high moments will be practically idle.
They may enable us to describe closely
an individual random sample but no safe
argument can be drawn from this
individual sample as to the general
population at large, at any rate so far
as the argument is based on the
constants depending on these high
moments” (13:44).
This limitation led to the development of equations to
correct the raw or grouped moments (9:360-362).
Another concern with the method of moments is the

question of whether a finite number of moments can uniquely

determine the distribution. Although there is a one-to-one
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correspondence between the moment generating function and
the distribution, unless the moment generating function is
known, the moments, in general, do not uniquely determine
the distribution function. This concern is referred to as
the problem of moments (29:81).

Although estimates obtained with the method of moments
are sometimes biased, we can often remove the bias with a
simple correction and thus obtain an unbiased estimate
(9:498). "In general, these estimates are consistent"
(3:389). However, the asymptotic efficiency of the esti-
mates is often considerably less than 1, which implies that
they are not the "best" possible estimates from the
efficiency point of view (9:498).

Method of Maximum Likelihood.

The concept of maximum likelihood was first introduced
by R. A. Fisher in 1912 and applied to parameter estimation
in 1921 (9:498).

There are two crucial assumptions of the method of
maximum likelihood. First, the correct form of the equation
must be known or assumed. Second, the data must be a repre-
sentative sample from the whole range of situations about
which the analyst wishes to generalize (10:7). The second
assumption is common to all methods of density estimation.
The first assumption, however, is characteristic only of
parametric estimation techniques, although some parametric

techniques allow a less restrictive assumption of the form

33

‘.‘-..~ o e e ..\..‘ .

PR S I T Y I PR A S P AT S R T SRR St S U PN . »'.‘.-'A'.'\'\'-‘-‘.
PRSIV IV SIS FVI S I ST I 5. Sy S G SO S R T SISt A -t ST I SIS P SR SO




of the equation than others. This point was emphasized
earlier in this chapter.

The method of maximum likelihood consists of deter-
mining the values él,ézp.nék which maximize the likelihood
function with respect to ©8j,....8y . The likelihood function

is defined as:
n
L =Tr f(xileln"Olek)
i=1

where f£(x;1€,,...,8y) is the p.d.f. of X;. This is equiv-
alent to maximizing log L with respect to ©1reeee®y since
both L and log L are maximized at the same value. This is
useful since log L is sometimes easier to maximize than L.

To maximize the likelihood function, an analyst usually
differentiates L (or log L) with respect to each of the
unknown parameters ©;,...,8;. These derivatives are then
set equal to zero and the resulting system of equations is
solved for ©p 1000 Oy The solutions to these equations are
the maximum likelihood estimators (23:35-74; 27:183-186).
The primary difficulty with this method is that the system
of equations often cannot be solved directly and the
constants have to be found by r merical approximation
(13:252).

Still, under some general conditions, maximum likeli-
hood estimators are consistent, asymptotically normal, and

asymptotically efficient (3:389). Although the estimates
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are not necessarily unbiased, many times they can be modi-

fied so that they become unbiased (28:186). For these
reasons, the method of maximum likelihood is the most widely
used density estimation technique (41:13).

Method of Least Squares.

Another popular technique for fitting curves to data is
the method of least squares. This method involves finding
the constants of the assumed equation which minimize the
square of the differences between the actual data values and
the values predicted by the equation (23:75-91; 29:482-502).

Linear least squares is a well-developed technigque that
can be applied to any form of equation that can be refor-
mulated through transformations into another equation that
is linear in its coefficients. Daniel and Wood (10:19=-23)
suggest appropriate transformations to transform quite a few
nonlinear equations into a model that is linear in its
coefficients.

Nonlinear least squares estimation is a relatively new
area developed to accomodate models which cannot be made
linear through transformations. Several methods are avail-
able which use numerical techniques such as Gauss-Newton or
‘'steepest-descent to converge on a solution (1C:9-10).

For the simple linear model and when general assump-
tions are made, the Gauss-Markov theorem states that the
least squares estimators are the best (i.e. minimum vari-

ance) linear unbiased estimators of the unknown coefficients
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Iii in the model. Further, when the random errors in the model
(a are normally distributed, the least squares estimates are
maximum likelihood estimates and are of minimum possible
variance (10:7).

Other Methods.

S In the minimum chi-square method, the observations are
f{ grouped into ¢ intervals and the values el,.u,ek are found

which minimize

. y i

c
2 = izl [n; - np;j(©7,...,8,)12
vy~ - n (e s e 0 9
) P8 reeei8))
g
ij where nj is the actual number of observations in interval i
(< and npi(el,.u,ek) is the predicted number of observations
A
s in the interval, regarded as a function of ©;,...,6y
CAE
o . . . .
I (3:389). The asymptotic properties of minimum chi-square
L.
'T' estimators are similar to those of maximum likelihood esti-
‘;f mators (23:93). But as with some previously mentioned tech-
N.
4
X niques, the equations are usually too difficult to be solved
> analytically and a numerical technique must be used. Fur-
§$ ther, the observations must be grouped, even when dealing
$§ with a continuous distribution, and it seems rather wasteful
AN :
5] to impose an otherwise unnecessary grouping for estimation
51: purposes (23:93).
s"\.
:i: In Bayesian statistics, © is not regarded as an unknown
;] constant, but as a random variable. Thus, it has a
30
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probability density function, although this p.d.f. 1is

unknown. The objective in Bayesian estimation is to combine
any prior information about the distribution of © with the
random sample before estimating 8. Bayes' method is well
formulated for a single 8. It involves multivariate dis-
tributions of ©y++¢.,8, when a vector of parameters is
considered.

If g(®) is the p.d.f. of the parameter which expresses

the prior information about 8 and

n
f(xl,...,xnle) = T'; f(Xi|e)
i=

is the joint p.d.f. of X;,...,X,, given O, then the

posterior p.d.f. of 8, given the random sample, is

g(e) £(xy,...,x,10)
Jate) £(x;. ... x,08) d6

h(elxl,---.xn) =

where the integration is performed over the possible values
of ©. The posterior p.d.f. of & represents the current
knowledge about 8, incorporating the prior p.d.f. of € and
the random sample. Any measure of centrality of the poste-
rior p.d.f., such as the mean, median, or mode, can be used
as a point estimate of © (29:339-351).

Another relatively simple way to estimate the form of
the distribution is to use the graphical method. With this
approach, the points of the empirical (i.e. sample) cumu-

lative distribution function (c.d.f.) are plotted on
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probability paper of the assumed type of distribution. If
the points lie roughly in a straight line, then the correct
form of distribution was assumed.

With some types of probability paper, a scale is pro-
vided to estimate the parameters of the p.d.f. (22:295-308).
Alternatively, parameter estimates can be obtained using
other techniques such as maximum likelihood.

A lesser-known technique of density estimation is the
minimum-distance method. Given a distance function d4(F,G)
which measures how "far apart" two cumulative distribution
functions F and G are, the minimum~-distance estimate of & is
the value of & which minimizes d(F(xleLFhﬁx)L where F(x)
is the empirical c.d.f. Although intuitively appealing, the
minimum-distance estimate is almost always difficult to find
(29:287-288).

The Gram=-Charlier type A series is sometimes used to
approximate the p.d.f. of a distribution whose range is
doubly infinite (i.e. £(x)>0 for -w<x<®w)., It is based on
the normal distribution and its derivatives and uses a
series expansion involving Hermite polynomials to approxi-
mate the unknown p.d.f. (37:257-262; 9:222-227; 17:46-60).
The Gram-Charlier type B series is based on the Poisson
distribution and involves Poisson-Charlier polynomials
(17:72-81).

In a recent dissertation, Hill (17) suggested several

ways to estimate a p.d.f. if a finite number of moments or
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the moment generating function is known. If the moment
generating function is known and the function is continuous
over the positive real line, then the p.d.f. can be found by
finding the inverse Laplace transform of the moment gen-
erating function (17:92-106). Alternatively, the moment
generating function could be used to obtain moments of the
distribution and one of the series expansions, using the
Gram-Charlier type A or B series or Laguerre series, could
be used to approximate the p.d.f. (17:46-81). Hill also
suggested using the moments to fit a curve of the Pearson
family of frequency distributions (17:82-92).

Technique Selection

The H-function, defined in Chapter 2 as

mn

H [x:{(aj,A3)}, i=1,...,p; [(by,B3)}, J=1,....q]

P a
has 2(p+q) parameters to be estimated. For statistical
distributions, two additional parameters are included to
allow for scaling and to ensure that the H-function distrib-
ution integrates to one over the appropriate range. Thus,
for H-function distributions, there are 2(p+g+l) parameters
to be estimated. We therefore needed a method of estimating
parameters that could produce estimates for a vector of
parameters.

Method of Maximum Likelihood.

As noted in a previous section, the method of maximum

likelihood can be used with a vector of parameters and is
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widely used for this purpose. The maximum likelihood esti-
mates also possess many desirable properties of estimators.
Therefore, we attempted to obtain maximum likelihood
estimates for the parameters of the H-function.

Let xl'xz""'xr be a random sample from the H=-function

distribution
mn
k H [cxz{(aiIAi)}l i=ll"'lp7 {(bj'Bj)}l j=1l"'lq]l
P 4
mn
hereafter abbreviated as kH (cx). our objective is to
P4

obtain point estimates for the 2(p+q+l) parameters k,c,a;
and A; (i=1,...,p), and by and By (j=1,...,9) using the
method of maximum likelihood.
The likelihood function is simply the product of the
individual densities. For a random sample of size r,
m n

r
L(k'c,ai’A' ,b',B'le'oOO,xr) =-r-r kH (CXh)

m
TT [(bs+B5s) 17 [(1-a;-A;s)

=77 | K. j=1 il (exy)™*°
h=1)2T1 P d

c TT [(aj+Ays) TT ["(1-bs-Bys)

i=n+1 j=m+1

This function must be differentiated with respect to each of

the parameters k,c,ai,Ai,b-,B . Differentiation with

3’73
respect to k or c, while not trivial, is easy when compared

to differentiation with respect to the other parameters.
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Mathai and saxena (26:19) give results, due to
Buschman, for the Mellin transform of the partial deriva-
tives of an H~-function with respect to its parameters.
These results imply that the partial derivatives may be
brought through the contour integral and evaluated using the

chain rule. For example,

10
dH (x)
01 = J[ ["(p+Bs) ¥(b+Bs)x~ % ds
ob c
and
3 10
H (x)
o1 = _1 J( s [(b+Bs) ¥(b+Bs)x~S ds
oB 2mi Jc

Consider the special case where k=c=m=g=1 and n=p=0.

Then the likelihood function is:

r 10
L(b'Ble,ooo'xr) = Tr H (Xh)
h=1 O 1

1
=TT 1 j[ ["(b+Bs) (xh)’s ds
h=1 C

The maximum likelihood estimates for b and B are the

solutions to the two equations:

r 1
h;l —n"'fr'(b+Bs)\P(b+Bs)(xh) Sds

1
{ Tr 72w jfrkb+Bs)(xj)'s ds] | =0 (3.1)
j#h C
41
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Contour integrals are usually evaluated by summing the
residues at the poles of the integrand. For the first
contour integral in Eq (3.1), zero and all the negative

integers are poles of order two. Therefore, it could be
replaced by an infinite sum of residues, say'z: g(xy,,b,B,J).

The other contour integrals in Eq (3.1) are simply H-

functions which equal

For the first contour integral in Eq (3.2), zero and all the
negative integers are poles of order two. Therefore, it

could also be replaced as an infinite sum of residues, say

@

J=0

rewritten as:

h=1

1
Z—TTi[ sr(b+Bs)\IJ(b+Bs)(xh)"sds
C

Z: u(xh,b,B,J). Thus, Egs (3.1) and (3.2) could be

1
L TT7 271 j[rxb+Bs)(xj)'s ds]|= © (3.2)
j#h C

0

J=0

© 1
b B .
g(x IbIBIJ) TT 1 .B- —(xj) = O
o s\ 5




L
x® b B
\_' B e"(Xj) —

ﬁbﬂﬂ

e u(xy,b,B,J) ;12; %(xj)
The maximum likelihood estimates are the values of b and B
which satisfy the above equations.

It should be noted that the convenient assumptions
k=c=m=g=1 and n=p=0 caused several simplifications. First,
there are only two equations to be solved. Second, the
integrand in each contour integral was relatively simple.
With more complicated integrands, the evaluation of contour
integrals by the sum of residues becomes more difficult.
Finally, in the more general case, the H-functions in Egs

(3.1) and (3.2) could not be expressed in the closed form:

1
b B
7 =(x3)
B 3

Instead, each would be an infinite sum of residues, say

(0 o)
Z: l(xj,b,B,J). This would make Eq (3.1) of the form:
J=0

r © @
1 2 glxpp,Ba) | TT( 2 1(x4,b,8,3) =0
h=1 | J=0 j&h \ J=0
Since no general results are known for the product of
contour integrals or the product of infinite series, more

research is required before maximum likelihood estimates for
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the parameters of the H-function can be developed. Thus,
the method of maximum likelihood cannot yet be used to
obtain estimates for the H-function parameters.

Method of Moments.

The method of moments seems to be the next most widely
used technique for density estimation, in spite of the
concerns menticned earlier. As seen in Chapter 2, the
analytic moments of the H-function are simply products and
quotients of gamma functions, where the argument of each
gamma function is a linear combination of a pair of the
parameters. These moments could be set equal to the moments
of the data, creating as many equations as there are param-
eters to be estimated. These equations can, in theory, be
solved to obtain estimates for the parameters. The method
of moments, as applied to H-functions, will be fully derived
in Chapter 5.

The other parametric density estimation techniques
generally do not produce estimates as good as those from the
method of moments. Although the method of linear least
sgquares can also produce good estimates, the H-function
cannot be transformed into an equation that is linear in its

parameters.

44

LIPS . . -t P N SR F— ] - - . S
e N L S S e L < R T T T A
) y T Y. IR TN P, . S L




v’ N

’ v
Al
B N )
v ere

4 _ 2
X

s
2

4 SN

-

.
-
-

g
.l ’

.3337734

o

4
o o

LAt
PANS

e

7 e

O

NSO
y & &

.".

v Nonlinear Solution Technique

The method of moments produces a system of nonlinear
equations that each involve products and quotients of gamma
functions. We need to find a solution of these simultaneous
equations. Numerical analysis techniques already exist that
can accomplish this task. A survey of the most common
techniques was conducted to determine which might best be
applied to our specific problem. Three of the main consid-~
erations were convergence conditions, amount of calculation,
and rate of convergence.

Fixed-Point Iteration

In fixed-point iteration, we consider two nonlinear
equations in the form

f(x,y) =0
(4.1)

g(x,y) =0
We rewrite these equations by taking an x out of the first
equation and a y out of the second. This gives the

equivalent form

X F(x,y)

(4.2)

Y G(x,y)

so that any root (X,¥) will solve both sets of equations.
It should be noted that there are many ways to rewrite
equations from the form of Eq (4.1) to the equivalent form

of Eq (4.2).
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The fixed-point iteration begins with an initial guess

(x ) and generates successive approximations from the

o'¥o

recursive relationship [6:84]

Xjq1 = Flxj.y4)

(4.3)
Yiep = G(x10¥4)
It is possible to accelerate the iteration process by using
the most current information on Xi41 in the second equation
of Eq (4.3). This produces
X+ = Flxj,v4)

Yisr = G(Xj.1.¥5)

which will converge provided the original iterative process
in Eq (4.3) converges [5:446].

For the original iterative process, convergence occurs
under the following sufficient (but not necessary)
conditions:

1. F and G along with their first partial derivatives

are continuous in a neighborhood about the root
(xX,¥).

}i 2. For all points in the neighborhood,

l%%‘ ‘%& <M <1
|%§| + I%gl S M<1

for some M, and

3. The initial approximation (x,,¥,) is taken from
the same neighborhood [6:84; 39:130; 35:223].
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:ﬁ: Moreover, if M is very small for all steps in the iteration

(x;,Y:), then the iteration converges quickly relative to
irYi Y

\E: the case when the magnitude of M is near one [39:130].
!:ﬁﬁ We define the order of convergence as a measure of the
TN speed or rate of convergence. Order of convergence is the
<)
:g: lowest value of n such that the nth—derivative of g(x)
'I‘T\“
e evaluated at the solution X does not equal zero. For this
o reason, fixed-point iteration of the type x = g(x)
L\
'{E generally has first-order or linear convergence [39:84-85].
}ﬁ; Newton's Method

;}’ Next, we discuss another fixed-point iteration of the
bﬁf type x = gfx) which has second-order or gquadratic conver-
o . .
A gence [44:145-146]. In this case, g(x) is chosen so that
" its first derivative vanishes at the solution X.

:ﬁ The formula for a Newton iteration can be derived

g
-\_\.
oy through a Taylor series expansion of f(x). When £(x) is
.\'.

N twice continuously differentiable, then
:ﬁﬁ 5
R £'(x. )(x, _-x, £ X, =X,
ifi f(xi+l) = f(xi) + ( i)( i+l 1) + (&) i+l 1)
A 11 21
;;b where ¢ lies between Xy and Xi41® Suppose that xj., is
g
‘{: chosen so that f(xi+l) is nearly equal to zero and also that
;é (xi+1'xi)2 is sufficiently small so that the last term can
2}; be neglected. Then the above Taylor series simplifies to
= ' -X.
0 = £(x;) + £'(x;)(x;,1-%;)

.i
~o
S

'

\:_~
L 47
AN

, X




I B i A Rt SRS S RS i I A R E A R i A B . AT AL i R A e L RSC A A -1

which can be solved for x.

i+1 'O give the recursive

relationship for Newton's Method as [44:132]
£(x,)
Xi+l = xi - 1 (4-4)

f' xi

For the general form x = g(x), the iterative process

in Eq (4.4) will have second-order convergence if the

derivative of g(x) is zero at the solution X. By
differentiating,
g'(x) = £(x) £ (;)
[£'(x)]

g'(X) = £(%) £°(R)
[£'(%)]12

Since f£(X)=0, the numerator is equivalent to zero. If the

root X is simple, then £'(X) is nonzero, g'(X) is zero, and
the iteration converges with order two. However, if multi-
ple roots exist at X, then L'Hospital's Rule must be used to
show the convergence degenerates to first-order [39:85-89;
44:132-133].

If the derivative of f(x) cannot be solved explicitly,

then it can be solved using the approximation formula

£'(x) = £(x +E)E - f(x) (4.5)

for very small ¢ [6:278].
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xS To find the solution to the system of n nonlinear

N equations

|
O

-':: fl(x)
o~ £,(%)

]
O

(4.6)

£, (%)

[}
o

g
PV

the recursive relationship in Eq (4.4) can be expanded to

i .ax

p.3

Sl

i1 = %5 - ()7L F(R) (4.7)

A

.
atata

where J(ii) is called the Jacobian matrix defined by

" .’".‘""

o

afl(i) afl(i) of (S‘c)—-T

axl 3x2 an

afz(i) afz(ﬁ)
9X) 90Xy 9%p

P
w

N .

’
K

® s

a aw

‘Ing
s

L g

J(%) =

PACRE

J"J‘.J"."

afn(i) afn(i)
axl axz §xn

b B

[P B

e

2
- W
n

B

evaluated at the ith iteration of ¥ and the evaluation of

l.“’.
taf

the equations in Eq (4.6) at ii is F(ii) [5:450].
&5 The approximation formula for derivatives in Eq (4.5)

can also be expanded to become

. %y :

o,
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where §{ is very small and &, is a n-vector whose only non-

zero entry is a one in the kN row [5:456; 30:263.

For the recursive relationship in Eq (4.7), convergence
occurs under the following sufficient (but not necessary)
conditions:

1. f fz,n., along with all derivatives through

second ordér are continuous in a neighborhood

about the root vector X,

2. The Jacobian J(ﬁ ) does not vanish in the same
neighborhood, and

3. The initial approximation £ is chosen suffi-
ciently close to the root vector X [6:86; 5:4491].

When the generalized Newton's method converges, it has
second~order convergence if the roots are simple. But it is
difficult to insure that the determinant of the Jacobian is
not zero. Furthermore, the necessity to invert the Jacobian
at each iteration requires many computations and thus
simpler methods are needed in most cases [39:133].

Modified Newton's Method

For two nonlinear equations in two unknowns, the modi-
fication of Newton's method consists of applying the single-
variable Newton method two times, once for each variable.
Each time this is done, the other variable is assumed to be
fixed. Succeeding approximations are then generated from
the recursive relationship [39:136]
xipp = xg - E(Xi¥i)

Ex(x50y5)

- g(xilYi)

(4.9)
Yi¢l = Yj
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which can be accelerated by using the most current

information on xj in the second equation of Eq (4.9)

+1
[6:88].

Note that generally we could use either f or g to
calculate the new x and use the other function to calculate
Y. One of these choices will usually converge while the
other diverges, depending on the exact problem. For n
nonlinear functions in n unknowns, there are nl ways of
cnnosing the n functions to find n unknowns. Often only one
of these choices will converge and this is the main disad-
vantage of this method [39:136~143]. But if the correct
combination is found, the convergence rate will be remark-
ably rapid and faster than linear convergence [6:87-89].
However, we need to find another simple method with a better

chance for converdgence to the root.

Steepest Descent Method

Next, we discuss a gradient search technique. 1In
steepest descent, the recursive relationship for a general

system of nonlinear equations is

%41 = %5 - J(xi)T F(%;)

which is similar to Eq (4.7) except that the transpose of
J(ii) is used in place of the inverse [32:62-63]. Another

way to look at steepest descent is to consider the problem

of minimizing




Y

L

o

N

::.': n
o M%) = ) [£;(%)12 (4.10)
e i=1

{.

~ s

ALY The value of ﬁk which causes M(ik) in Eq (4.10) to equal
'w.‘:\

}Q zero will also solve the original set of n nonlinear equa-
A

tions [24:244-245]. Although it only promises linear con-

“u )

LS

5ﬁ vergence, "the method of Steepest Descent has been found to
'ix‘ be an effective way of getting reasonably close to the solu-
) tion" [32:63]. For this reason, hybrid algorithms based
3; initially on the method of Steepest Descent followed by
3 !
:ﬂ Newton's method can be very reliable for systems of non- ;
X{ linear equations [14:36-37].

q‘"

l.J-

o Levenberg-Marquardt Method

iﬁ Such hybrid algorithms are quite commonly used today.
ﬂ\ When dealing with a system of n nonlinear equations, the
;i recursive relationship for the Levenberg-Marquardt method is
‘.::ﬁ

NN given by

LN -

o Xis1 = ¥ - H(R;) F(X;)

.‘:

«ﬁ where H(%;) = [J(X)TI(K;) + A 11713(%)T and F(X;) is the
oo evaluation of the equations in Eq (4.6) at > Y
e

25 {32:63]. Note that as A; increases, the step vector H(X;)
4..

AY

iy tends toward the pure Steepest Descent vector. On the
bt

N other hand, if A;=0, then the method reduces to Newton's
o I

\"-

:g method. By reducing Ai systematically, the hybrid itera-
L

" tion combines the better features of both methods [32:63-64].
O

A3

X

\:
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However, the problem of inverting and solving the

Jacobian matrix at each iteration is still a major weakness
because the Levenberg-Marquardt method still involves an
inversion. The number of computations is excessive even for
a computer. The Jsolution to these problems involves algo-
rithms that are known as quasi-Newton [4:577-578]. The idea
of a quasi-Newton algorithm is to eliminate the calculations
involved with the inversion of the Jacobian matrix [1l4:
38-45; 32:577-578].

Broyden's Procedure

Broyden's procedure can be used in an iteration method
to avoid the inversion of the Jacobian matrix at every
single iteration. The approximation to the inverse of the
Jacobian matrix A(%) is updated at each iteration using the

formula

T
A(R ) = A(%:) + [(Si+l = A(gi)Yi+l)si+1 A(ii)]
i+l’ ~ i

T
Si+1 A(R§) Yj4

where Y, , = F(%; ;) - F(%;) and
Siy1 = %541 - %; [5:455-460; 4:5811].

Of course, for the first iteration the actual Jacobian
matrix J(X,) must be found explicitly or approximated using
Eq (4.8). Then J(X,) must be inverted once before

Broyden's procedure can begin. After that, the procedure
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always produces an approximation to the inverse of the

Jacobian matrix A(ii) which can be wused to replace
J(ii)'l, the actual inverse of the Jacobian matrix. The

recursive relationship is

which is the same as Eq (4.7).

This procedure significantly reduces the number of
arithmetic calculations and still provides super linear
convergence [16:5-6]. Therefore, iterative methods with
second-order convergence will approach second-order conver-
gence when Broyden's procedure is used. Quadratic conver-
gence will be obtained as the approximation to the inverse
of the Jacobian matrix A(ii) becomes better [5:456].

Powell's Method

The best combination of methods and procedures studied
so far would be a gquasi-Newton hybrid algorithm. This was
found in an IMSL routine named ZSPOW which contains M.J.D.
Powell's hybrid method (HYBRD1l) for nonlinear equations
[32:87-114]. ZSPOW not only includes the beneficial fea-
tures of the Levenberg-Marquardt method, but also implements
the calculation-saving strategy of Broyden's procedure
[16:6-7; 30:45].

In a comparison of available software which solves

systems of nonlinear equations, HYBRD1 had outstanding per-

formance. Also, initial estimates of the parameters had




I

L}

S,

2

ﬁﬁ little effect on the convergence [16:24, 41-44]. All of
-:\‘q

(‘ this comes while still providing super linear convergence.
o Therefore, the method used in ZSPOW will nearly obtain
iﬁ second-order convergence.

b ‘

] In summary, the IMSL routine named ZSPOW has several
I} advantages. First, ZSPOW is a hybrid routine which permits
N
o a bad initial guess of the root. Second, ZSPOW is gquasi-~
K -. (f
b S~ . »

Newton with a convergence rate that is nearly second-order.

2

ﬁb Next, the user needs to supply only a subroutine that con-
A%

) tains the system of nonlinear equations that has to be
‘!

1" .

;‘ solved. Finally, ZSPOW outputs error messages if the
> ;

it iteration does not make good progress.

-~

o We applied this numerical analysis technique to our
A system of nonlinear equations. The program described in the
f& next chapter uses ZSPOW to produce accurate estimates for up
:'J

‘}3 to ten unknown variables from the same number of equations.
! -"4

N

a0

J'.:.

-’._.

-

'..-jzl

o

:

o

'm

'\.":

o

L

o

.:::' /

55

-Lw

Al AT A Y \'-." I ST SR
v

MR Y




[y hd f"
iy ).._ n“_'

Ly

e

& 2, %
a2

o

=

\ Methodology

The method of moments has been selected as the most
appropriate curve-fitting technigue to estimate the param-
eters of the H-function. The method involves equating the
appropriate number of analytic H-function moments with the
same number of data moments. This will create as many
equations as there are parameters to be estimated. As seen
in the following derivation, the number of equations can be
reduced by two through algebraic manipulation.

Generation of Equations

As discussed earlier in Chapter 2, the rth moment, My,
m n

of the H-function, kH (cx), 1is defined by the following
P4

equation:

-k
My = oA I(r+1)

where
n
Tl’ r‘(b +By+Byr) TT [M(1-a;-A;-A;r)
I(r+l) = 13 i=1
Tr [(a;+A;+a r) 1T [(1-by-B4-B4r)
=n+1 j=m+1l

Since I(r+l) has two parameters in the argument of every
gamma function, each H-function moment equation will involve

2(p+gq)+2 unknown parameters. The same number of equations

ST _..._.\
-Aa. st L \'\‘CL

SRR S




needs to be generated by setting M, equal to the data's rEh

moment.

Since consecutive data moments should be used, the

o2
> variable r could take on the values from 1 to 2(p+g)+2. Let
::Z:j‘; the rtP moment of the data be represented by M,.. By solving
o each equation for Kk,
\‘..c
)
Ry
CRs) r+l
S0 k =M ©
5 I(r+1)
1 ~"
-~ for r=1,2,...,2(p+q)+2. Since all the equations equal Xk,
22
< 2 3 2(p+q)+3
hy k=M 2 My P My(pyg)yp 2PHD) (5.1)
1(2) I(3) I{2(p+q)+3)
At
N
ﬂg& The adjacent equations in Egq (5.1) can be solved for c to
(N )
N give
LN
3-‘5..3 c = My I(r+2)
N M I(r+l)
yo r+l
N
' for r=1,2,...,2(p+g)+1l. Since all the equations equal c,
"y
N
':E c=M" 1(3) . ) 1(4) _ cee = Mzggfq)+1 1{2(p+q)+3) (5.2)
<. M_ I(2 M_ I(3 M 1{2(p+tq)+2
A 2 (2) 3 (3) 2 (p+q) +2 (2(p+q)+2)
jﬁﬁ The adjacent equations in Eq (5.2) can be solved to give the
;.i following homogeneous equations:
gﬁ 2
~ MiMjep [1(i+2)] -1 =0 (5.3)
2 . .
S (Mi+l) I(i+41)TI(i+3)
'_\'.
fOI’ i=‘l,2,.--,2(P+Q)°
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Note that although this algebraic manipulation has

O Wt’ SN
NIRRT
Y

reduced the number of equations from 2(p+g)+2 to 2(p+g), the

analyst will still be regquired to calculate all 2(p+q)+2

Pl e, Kol of of

data moments. Note also that if the zeroth moment is used,

4

el o
.

then Eq (5.3) will be evaluated for i=0,1,...,2(p+q)-1.
An example of this equation generation technique may be
helpful at this time. For the generalized gamma

distribution, the H-function is given as

)

Cum 2% 20 204

0

. B M R
A o T P
et L R P

€
v

10
kH [cx:(b,B)]
01

'\, [k

Contrs .

L]

* l.l
a0 L ]

Since p+g=1, the method should generate four equations and

then reduce the number of equations by two. Since I{(r+l)=

[(o+B(r+1)), the four equations produced by the method of

moments will be

K
M) = =2 [(p+2B)

k
¥ My = =3 [ (b+3B)
< c
k
M3 = 2 [ (b+aB)
k
My = —5 ["(p+5B)
N . . .
@ By solving for k and setting the equations equal to each
:? other,
e
N 2 3 4 5
k= M ¢ = Mpc” . Myc = Mgc (5.4)
- [Wb+285 "(b+3B) m(b+4B) rlb+585
.
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The adjacent equations are then solved for c and set egual

to each other to produce

c = Mp [(p+3B) _ M, [((b+4B) _ M [(b+35B) (5.5)
M,[(o+¥2B) M_T(p+3B) M T(b+dB)

The adjacent equations are again solved and the result is

the two following homogeneous equations:

()% [(b+2B)[(b+4B)
MM, [[M(b+4B)32  _ ) _

(M3)2 [M(o+3B)["(b+5B)

Once the two equations have been solved for the parameters b
and B, then the estimates may be used in Eg (5.5) to solve
for the value of ¢. After this has been done, k can be
found using Eq (5.4).

As expected in the example, the method generated two
equations in two variables. The two equations still require
four data moments to be evaluated. To emphasize a point
previously made, if Mgy through M,; had been used instead,

then the method would have resulted in the different

e homogeneous equations:

o

@

L——— MM, [M(b+2B)12  _ | = o
...‘, 2

‘ (M;)” ["(b+B)[(b+3B)

Pf: (5.6)
. MqM, (C(b+3B)]2 - 1=0

(1~/12)2 M{o+2B) (b+4B)
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These two equations are in the form of Eg (5.3) when i=0 and
when i=1 respectively.

Program Development

The general form of the equations in Eq (5.3) verifies
the fact that a system of nonlinear equations needs to be
solved. Even the simple case demonstrated in the example
produced two simultaneous nonlinear equations. Chapter 4
concluded that the IMSL routine named ZSPOW would be the
best numerical analysis technique to use for nonlinear sys-
tems of equations. Therefore, our program implements ZSPOW
in order to find estimates for the desired parameters.

Phase One.

The actual program development was modularized. That
is, the program was divided into four successive phases so
that each was easier to solve. The first phase involved
programs that could take perfect moments from known distrib-
utions and use ZSPOW to obtain estimates for the parameters.
Only the aj;, Ay, bj, and Bj need to be guessed initially.
The values of ¢ and k can be found using the formulas in Eq
(5.2) and Eq (5.1) respectively.

. The early programs in this phase could only handle one
;: special case of the H-~function at a time. This was because

rg ZSPOW required a subroutine to contain the equations which

»
4

needed to be solved and the early programs only used the

he
7
%j actual equations like those in Eq (5.6). 1In addition, this
t‘ phase's early programs could only outp.t the results for the
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;4_., one special H-function. However, these early runs did dem-
f onstrate the merit of the ZSPOW numerical analysis technique
e for finding accurate estimates of the parameters.

E\i The later runs in phase one became more general. These
::'.;:EZ programs could generate equations in the form of Eq (5.3)
! and output the results for the input values of m, n, p, and
E‘{E q. The only restriction was that p+q had to be smaller than
} six due to matrix dimension limitations. Our research was
:‘._ not expected to go past a 214 order H-function. Also, the
.: input variable FLAG controlled whether the zeroth moment was
:j used. Therefore, the user could generate the correct
:_’.: equations by using the proper input of FLAG.

This concluded the first phase programs. Accurate
:-\..:: results were achieved with perfect moments for all 15t and
;_. 2nd order H-functions. At times when the initial guess of
the parameters was far away from the proper number, ZSPOW
"..:": would not converge on the expected root. This problem was
_: corrected during the second phase.

"{ Phase Two.

:":; The second phase involved attempts to control the ini-
"_:':E tial guess of the parameters. The first control consisted
- of checking the initial guess against a set of H~-function
-i; convergence conditions (26:3; 7:72). Some of these condi-
.-’ tions were mentioned previously in Chapter 2, but now we
-

i:z fully discuss the subject.

’
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If a;

l’b

3 Ay Bj, m, n, p, and g hold their usual

meaning in the definition of the H-function, then the new

terms D, E, and L can be defined by the following equations:

ii gﬁ p !
D = A. + B: - A; - ;B
i=]1 * j=1 ] 1£;+1 * j=m+1 J
5 (5.7)
E= A‘- B' 50
=t i= J
q p
L = b, - 3 - a. + B
;;1 J 2 Egl * 2

Chapter 2 also pointed out that all Left Half-Plane (LHP)

m
poles of TT r(bj+Bjs) must lie to the left of C; and all
j=1

Right Half~Plane (RHP) poles of jgr [M1-a;-A;s) must lie to
i=1

the right of C;. From this point on, we refer to the path

of integration (Cl) as the w line. Since there may be a

significant distance between the right-most LHP pole and the

left-most RHP pole, the w line may be placed anywhere

within the range defined by those two values. This distance

will be referred to as the w range where is the

[7Y)
low

right-most LHP pole and w h is the left-most RHP pole.

hig
With these definitions, a completely specified H-

function represented by an infinite sum of residues does not

']
o

:; converge under any of the following conditions:
Y

@

o

v

Ol .‘n

I.:-

- 62

N

&

0% -4




Case 1. D=0 E <O L > (E) wygy
Case 2. D=20 E>O L > (E) “high
Case 3. D=0 E=20 L >0
Case 4. D=0 E=0 L=20

Case 5. D <O
Case 6. “nigh
For all other cases, the H-function will converge.

This convergence check was placed in a program sub-
routine. After the program user makes an initial guess of
the parameters, the completely specified H-function is
checked against the convergence conditions. This forces the
initial guess to meet convergence conditions and helps ZSPOW
find the correct root. As a last check, the final estimate
of the parameters determined by ZSPOW is also checked for
convergence.

Up to this point, the user had been given the responsi-
bility for the initial guess of the parameters. The second
control on the initial guess involved supplying initial
guess default values. TwO requirements were built 1in.
First, the default values were designed to always meet the
initial convergence condition check. Second, the default
guesses only take on values between zero and one. The
reason for this may not be clear. For common distributions,
when an H-function parameter is specified by an exact number,

that number will take on the value O, 1/2, or 1 (Table I).

when a H-function parameter is represented by a variable, no
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default guess will be appropriate for all possible values of
the variable. Therefore, the default guess of the
parameters is as good as possible,

Many runs on 15% and 279 order H-functions were per-
formed at this time to validate the use of the variables
FLAG and GUESS. When FLAG = O, the zeroth moment was used.
When FLAG = 1, the moments began with the first moment. The
same results were achieved on each run no matter how FLAG
was set. Since we were concerned with the inaccuracy of
higher degree moments, most future runs were performed with
FLAG = 0. This is the suggested configuration for running
the program. However, when the zeroth moment is inaccurate,
the program user may wish to set FLAG = 1.

If GUESS = 0, the user supplied the initial guess of
the H-function parameters. When GUESS = 1, the default
initial guess was used. The default guess also performed as
expected. If distributions had actual parameter values
around the range (0,1), then GUESS = 1 converged to the
correct root. If distributions were run that had actual
parameter values too far from the (0,1) range, GUESS = 1
produced an error message. For example, Beta (8=2,8=10)
will not run using the default guess because the initial
estimate of small a=0.7 is not close enough to the actual
value of a=11.0. Therefore, we suggest that the program
user set GUESS = 0 and make an initial guess unless he

thinks the unknown distribution has actual values for the
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parameters near the range (O,1). Table II lists the dis-

LAAN

tributions which may always be run with the variable GUESS

,v
%

set to one.

Table II. Distributions With Constant H-function Parameters

.
2 (a,B) (b,B)

Exponential - (0,1)
§ Rayleigh - (1/2,1/2)
4 Maxwell - (1,1/2)
A Half-Normal - (0,1/2)
3 Uniform (1,1) (0,1)
Bessel - (0,1/2) (0,1/2)
-
. All other runs with GUESS = O converged when a reasonable
% guess of the parameters was made.
X In conclusion, the accurate convergence to the root by
. ZSPOW was enhanced by the convergence checker subroutine and
;: the option for an initial default guess of the parameters.
% At this time, we had produced a program which could consis-
3 tently fit more special functions than any previous general
3 special function procedure.
¥
q
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Phase Three.

o In all previous computer runs, exact moments had been

( used. In this respect, the computer program had been veri-
<
5 fied. By verification, we mean the program performed as it
- was expected to perform. Phase 4 would continue the verifi-
-

cation process by insuring that error messages performed as
g desired. On the other hand, Phase 3 concentrated on valida-

g tion. 1If the program was to be valid, it should not require

- perfect moments.

v; One way to input imperfect moments would be to add some
I; error to each moment. A more reasonable approach might be
t. to calculate the moments from raw data. But an analyst

cannot always control the type of data he will receive.

fﬂ Therefore, Phase 3 added the capability to input the
ﬂ_ following four types of data:

Ei Type O. Previously calculated moments

ii Type 1. Univariate deviates

Type 2. Ordered pairs from a relative frequency

Type 3. Ordered pairs from a continuous function

A S

» Znl

The last three types were new and each needed a subroutine

that could calculate moments from raw data.

For type one, the data's rth moment was calculated by

YX VWY - f

.. o
Y 2 d

using

s
+ P
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where there are n univariate data points. For type two, the

- data's rth moment was calculated by using

{.

-:%: m

o My = ) (xj)r Pr (X=x) (5.8)

o j=1

e

o m

o where there are m ordered pairs and Z Pr(X=xj) = 1. For

20 =1

type three, the data's rth moment is exactly represented by

X hY

3 «

\ My =f (x)T£(x) dx

N - 00

j::j This formula may be approximated by using

1_::‘

-:\:

'&i} m a

{ Mpo= ) (x0T £xy) ax (5.9)

A k=1

o

-QJ‘I

N m

.,,:- where there are m ordered pairs, Z f(xk) need not equal

) k=1

':::: one, and Ax is the interval between the Xx values. Since

o

o Egs (5.8) and (5.9) were similar and both involved ordered

-

"

pairs, they were combined into a single subroutine.

- Recall that the H-function is only applicable for con-

- tinuous functions. This means that even though discrete

o distributions like the Poisson can generate data in the form
of type one or two, the H-~function will not be useful in
these instances. Only univariate data from continuous dis-
tributions defined over positive x should be used in type
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one. Similarly, only relative frequency data from contin-

uous distributions defined over positive x should be used in

‘_ type two.
:f At this stage, we generated data to validate the pro-
{: gram. Type one data consisted of deviates generated from

standard distributions. For example, the exponential

o.‘. ‘N

deviates with 0=2 were generated by IMSL using the formula

n}- "4 .'4 "- "l

x = -[1In(1-2)]/2

A

'Q where z is a random number from a uniform (0,1)
o distribution.

'? Type two data was created by classifying the type one
i“ deviates into intervals. This produced ordered pairs
fe (x,£(x)) where x is the midpoint of the interval and f(x) =
\3 Pr(X=x). The Pr(X=x) is the proportion of deviates within
;: the interval. 1In the exponential example, the ordered pairs
_: may look something like

. (+5,.5)

‘: (1051025)

\‘ (205'010)

~ (3.5,.06)

" (4.5,.04)

:" (5.5,-03)

% (6.5,.02)

. The first ordered pair represents the fact that 50% of
o the exponential deviates were located within the interval
.

5 (0,1). In truth, an analyst would never combine type one
o’

“o

¢

% data into intervals to create type two data. By doing this,
-

.
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he would only lose information. We go from type one to type

two data only for the ease of generating ordered pairs of a

relative frequency from a continuous distribution.

Finally, category three data was created by assuming
the function was known. This produced ordered pairs
(x,f(x)) which basically plot the function at a limited
number of points. To keep the mathematical calculations
simple, the function is evaluated so that Ax is the same

between all x values. In the exponential example,
£(x) = 2e72%

and the ordered pairs would be created by observing the
value of f(x) as x is incremented from 0.0l to 10 by 0.01l.
We were careful that each type of data was generated
from the same distributions and functions that had been used
for verification. The moments calculated from the data by a
moment generating program were compared to the perfect mo-
ments. The data moments were fairly close to the true
moments but they became increasingly inaccurate for higher
degree moments. Next, we validated the convergence of the
phase three program with the inaccurate moments. The pro-
gram converged to nearly the same root that had been ob-
served during verification. Finally, the actual raw data
was input into the program. The program always converged to
the same root as had been seen with the inaccurate moments.

This validated our program's ability to handle raw data.
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In conclusion, the program now had the following fea-
tures. The program could input either previously calculated
moments oOr three types of raw data. If raw data was input,
the program would generate the appropriate number of data
moments. The program would then supply a default initial
guess of the H-function parameters if the user did not
supply his own. The completely specified H-function would
next be checked against the convergence conditions. If they
were not satisfied, the program would be terminated. If the
convergence conditions were met, the program would continue
by using ZSPOW to get final estimates of the H-function
parameters. Once ZSPOW had finished, the final estimates
were again tested against the convergence conditions. The
final results were then output along with an error message
if the last convergence test had failed. The program's
flowchart can be seen in Figure 1.

The reason for the output even if the final estimate
did not meet convergence conditions was to check if the
inaccuracy of the moments had caused the problem. An exam-
ple of this might be an estimated B=1.0 in the numerator and
an estimated A=1.01 in the denominator. This would produce
a D=-.01 in Eq (5.7) and therefore the H-function would not
meet the convergence conditions. However, both estimates
should probably equal one. The estimate of A may be off due
to imperfect moments. The only way to find this type of

error is to always output any final results of ZSPOW.
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:“ However, many other types .f oerrurs Wwill cause the program
to stop.

Phase Four.

The final phase added error checks and comments to the
program. The comments were intended to help the user under-
stand the program. The error messages were intended to keep
the user within the bounds of the program and to give the
user some idea of why the program was stopped. In order to
get the most information from the error messages, it is
important to know the order of error checks. For instance,
if three conditions are checked and the progrzam stops be-
}ﬂ cause the third condition is not satisfied, then the user
- can reason that the other two conditions were satisfied.
The following list contains the successive order of
necessary conditions for the program to continue running:

-, 1. FLAG = O or 1

2. O <mz¢<g

- 3. O < ng¢<¢<p

Ei 4. ptqg £ 5

= 5. TYPE =0, 1, 2 or 3

I; 6. If TYPE = O, then number of moments = 2(p+q)+2

: 7. If TYPE = 1, 2 or 3, then amount of data > 20

:‘ 8. If TYPE = 2 or 3 then Ax the same between all pairs
: 9. GUESS = 0 or 1

-? 10. Initial guess meets convergence conditions

. 11. ZSPOW runs without IMSL errors
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In addition to these error messages, the program will output
an error message if the final estimate of the parameters
fails to meet the convergence conditions. The difference is
that the program will continue running for this last error
check and output the results of ZSPOW. The reason for this
has already been discussed.

Two final comments on error messages may help the
program user. First of all, when the convergence conditions
are not met, the program will output an error message
listing the specific case that was not satisfied. These
cases were listed earlier under the subheading of phase two.
Second, ZSPOW outputs the following error messages in Tape 6

1. IER=129 indicates that the maximum number of
iterations has been exceeded,

2. IER=130 indicates that the desired number of
significant digits is too large, and

3. IER=131 indicates that ZSPOW has not made good
progress.

All the error checks were verified by making the appropriate
mistake on the input tape.

The last comments added to the program consisted of the
data input format for Tape 8. Although many of the terms
have been defined previously throughout Chapter 5, the defi-
nitions are restated so they may be seen in one convenient
location. If the zeroth moment is used, then FLAG = 0. If
the moments start with the first moment, then FLAG =1. The
variable M is the number of "B" gamma functions in the

numerator, N is the number of "A" gamma functions in the
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numerator, P is the total number of "A" gamma functions, and
Q is the total number of "B" gamma functions. If previously
calculated moments are used, then TYPE = 0. If univariate
data are input, then TYPE = 1. If ordered pairs from a
relative frequency or from a continuous function are input,
then TYPE = 2 or TYPE = 3 respectively. GUESS = 0 if the
user wishes to supply his own initial guess of the H-
function parameters. If the default initial guess is de-
sired, then GUESS = 1. Finally, if TYPE = O, then NUM is
the number of moments. If TYPE = 1, then NUM is the number
of univariate data points. The variable NUM is the number
of ordered pairs if TYPE = 2 or TYPE = 3.

The data must be input on Tape 8 as follows:

1. FLAG, M, N, P, Q, TYPE, GUESS, NUM (Integers)

2. Data (Real) -

A. TYPE O - 2(P+Q)+2 moments from lowest
to highest

B. TYPE 1 - NUM univariate data

c. TYPE 2 or 3 - NUM data pairs in the
form x, £f(x)

3. Initial Guess (Real) -
A. GUESS 0 - 2(P+Q) parameters:
“B" pairs in the numerator
"A" pairs in the numerator
"B" pairs in the denominator

"A" pairs in the denominator

B. GUESS 1 - No input necessary
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The program was now in final form and can be seen in Appen-
dix C. It had been verified and validated by over one
hundred separate runs! We next discuss the program limita-
tions that came about because of the decision to use the
first definition of the H-function in Chapter 2 and the
decision to use the method of moments in Chapter 3.

Program Limitations

One of the first decisions that was made was to use the
first equation in Eq (2.1) as our definition of the H-
function. This decision forced the calculation of I(s) to

be done with the formula

m n
Tr r(bj+BJS) Tr r( l-ai_Als)
I(s) = 3j=1 i=1

P q
1 [(aj+n;s) 7T MM1-by-Bys)

i=n+1 j=m+1

This formula was placed in a program subroutine named

COMPIS. The program cannot solve for H-functions such as

mn
H(z) = B [2%:{(a;,Ap) s ((by,B5)}]
P q
or
mn 1
H(z) = H ['Z"’{(ai'Ai)}" {(bJ:BJ)}J

P 4

because the variable z must have a power of one. This 1is

not a serious limitation. The program user can use the

75




R e A & R e LS G IDL RS A R |

SRS

-.‘.Q

v

R

e :

N properties outlined in Chapter 2 in order to convert the
’l‘\J

¢ H-function to the proper form of

._-gt.

‘-:'.:'-’ m n

S0 H(z) = kH [szi(ainl\i)}? {(b]pBJ)}]

- P a

ii: As an example, suppose the program user expected an H-
-

e function like

S

e o1 L

o H(z) = H {(2z)7+:(-1,1):1

T 10

o

:’ He would only be able to run the program after using the
%b reciprocal property to produce

o

iy

'

10

(_ H(z) = H f2z:;(2,1)]

- where the variable z is taken to the first power.

o The second decision to use the method of moments posed
;ﬁz more serious problems. The first problem involved the
N

e unstable nature of the higher data moments. A sufficient
] discussion of this problem can be found in Chapter 3. With
S

{ﬁ data moments not close to their true value, the H-function
:22 cannot be expected to accurately fit the true distribution.
!3 The second problem with moments eliminated some func-
ij tions and one distribution from our H-function curve-fitting
R

s procedure. The method of moments does not apply to those
;% statistical distributions and functions that either do not
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have defined H-function moments (M,.) or do not have finite
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data moments (M,.). This included all trigometric functions,

the log (ltz) function, and the Half-Cauchy distribution.

’
]

- |

LA

The method of maximum likelihood estimation may allow these

r
»
>

few remaining functions and the one distribution to be fit
once the theory has progressed.
The third problem involved restrictions on three of the

an order distributions. These restrictions come

remaining
from the fact that 279 order H-functions require five addi-
tional moments besides the zeroth moment. Recall that the
recommended configuration for the program is FLAG = Q0. 1In
order to generate the required number of H~function moment
equations, the following restrictions must be met. For a
half-student distribution, the parameter & cannot be less
than or equal to five. For an F distribution, the parameter
@ cannot be less than or equal to ten. Finally, for a beta
distribution of the second kind, the parameter @ cannot be
less than or equal to five.

The fourth and final problem caused by the decision to

use the method of moments has already been referred to as

the problem of moments. Moments, in general, do not
uniquely determine the distribution function when only a
finite number of moments are available (29:81; 33:202-203).

This can be seen in Figure 2, taken from Ramberg (33:205),
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( which compares the graphs of two different distributions
lﬁl that have approximately the same first four moments.
- Data Generation
! The next step was to create data sets from.mathematical
~,
b
D8 functions and statistical distributions. We decided not to
S
-ﬁﬂ use either type 1 or type 2 data. Recall that type 1 data
o
o are univariate deviates and that type 2 data are ordered
:jﬁ paires from a relative frequency. Some mathematical func-
:fj tions could not be converted into either type of data. For
0y
L that matter, the conversion of univariate statistical data
b,
,’g into a relative frequency was both time-consuming and sub-
ﬁﬂ jective. Since graphs were desired, paired data were
NI
!’ necessary.
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Type 3 data had none of these disadvantages. Recall
that type 3 data are observations of the function £(x) at
various values of x. Both mathematical functions and sta-
éf tistical distributions could be easily converted into type 3
| data. The data pairs made graphing possible. These graphs
were important to provide a visual representation of the fit
e of the estimated H-function to the data.

The following three factors were considered when we

created the type 3 data:

’ 1. Amount of data,
2. Type of function, and

ﬁ: 3. Oorder of the H-function.

The amount of data could either have a small level or a
QQ: large level. For the small level, 20 data points were used.
ﬁ; For the large level, 100 or 150 data points were used. The
type of function could be either a nonstatistical, mathema-
tical function or a statistical distribution. Examples of
mathematical functions were the power and generalized gamma
functions. Statistical distributions included the exponen-
tial and beta probability density functions. The third
factor also had two levels, because we created both first
and second order data.
L As a minimum, we created 8 separate data sets to cover
:E each factor at two levels. This demonstrated the versatil-

ity of the H-function curve-~fitting procedure. In addition,
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2 many other data sets were created so that more than one
ZE graph could be inspected.

S% Procedure

ES Once the parameter sets were generated, we used the
iz computer program named THESIS (Appendix C) to estimate the
N parameters of the H-function from the raw data. These
E estimates could then be used in two ways.

-5 First, if the data was from a distribution, then the
E‘ estimates could be compared to Table III in order to deter-
'i mine the closest distribution. As an example, if THESIS
3: returned the values

S b = 6.00

b~

- B = 1.01

.

A k = .0027

{

o c = .5

E then the program user could hypothesize that the data was
% from a gamma distribution. Since ©-1=b and b=6.00, the user
? would estimate ©=7.00. Further, since c=¢ and c¢=.5, the
? estimate of @ is 1/2. Therefore, the user could stop and
. say the data was from a gamma (8=7,0=.5). However, the user
§ implies B=1.00 and k=.0027778 when he assumes that the data
§ is from that specific gamma p.d.f. There is no general
ﬁ method to reevaluate the other parameters once the
FE additional constraints have been added.

N

It is better to use the estimates of the parameters of

-
’

aFE

the H-function in another way, as is done in this thesis.

.l‘_? l..." H

80

.'.)\'-




(1'1-0)
Aa.ﬂnmv
£:0)
(n’(e+1)n-)
(n’0)
(n'(1-0)nN)
(1'1-0)
Am.ov
Am.ﬂv
Al.lv

Al.luﬁv

(1 1- &)

(170)

(1'1-8)

(1'9-)
Aa.muv
(3557
(n’(0+1)0-1)
(n’'1)
(n’1+(1-8)N)

(1’'1-9+8)

C(a) ](e)Jel/e
[(z/o) ](2/0) |n1/e
1-[(z/8) oMl
en
n
en
(8)J/(e+e) ]
1-[O8Zr]
(£r0) /2T
oM
e/19
-Lz/e)]e]
%}
-[(e) )10

(a’q)

(v'e)

Y

{puTy puooas) e©laq
d

3uapnis—-3TeH
o3axed

wIrojTun

uot3idung asmod
(puty 3IsaT3I) ®e3od
TewION-3J TeH
TT2MXel

ybrotiey

TINqToM
axenbg-TUD
1er3uauodxy

sued

sIi93aweIed uoT3INQIAISTJ uUOTIOUNI-H uoTINQIAISTJ

SUOTINATIISTA TedTISTILIS pazTITerIaUSD *III FTEVL

Jc-A.-JJ.-.J AN AJdeI.
. -i- * -.-a-.--l M .\.h\...\..\J\-\ -. 3 - K -. ) l.nc. o -u--sf.- .- A-ln\ \



find v e e TN E TN Y FUATYTETEHTE T 4N - e » . % e
RN NN A AT AR bt St R i e e AT

F-I‘V-I:V."“-\T."'\("l v, .('}'. - Twoy _.r“_'.r. d \?'\i”‘ R .-\ -~ " \7’_ -

{=,

Once the estimated parameters were found, we used another
computer program [7:Appendix B] to determine the value of

m n
kH (cx) for the same values of x as the data pairs.

P q

Finally, both groups of paired data were graphed together to
display the fit of the estimated H-function to the actual
data. These results, along with the discussion of the
measure of fit between the H-function and the data, will be

described in the next chapter.

82

St etetav.® IR e T T e et e T Tt At et et et e et e T e St L et A PR LI LI
' " s " e’ e - .« . S AR - - N N N ﬁ;\ﬁ‘)_ ..;‘;A‘:'A\*



NS

.1' (]
(NN

I )
)
LYY
.-

g

Q%ﬂﬁﬂwfj

VI Results

Measure of Merit

Earlier we mentioned the fact that we would use the
estimated mean squared error (MSE) as our criterion for
measuring the goodness-of-fit of thé H-function to the data.
For the itP value of X, let the value for the actual func-~
tion be f(xi) and the value for the estimated H-function be
H(x;). Then the square of the distance between the H-
function and the data point would be [H(xi)—f(xi)]z. The
sum of squares error (SSE) is then found by adding the
square of the distance for all n values of x

i:

SSE = [H(x;)-£(x;)]2

1

l-‘.
Mgt

Since we wanted to compare graphs with different amounts of
data, the SSE needed to be adjusted for the number of data

points as in

Estimated MSE = SSE/n

We expected to see a lower estimated MSE for the graphs
generated from a large amount of data.

Graph Description

An invented example of the graphs is shown in Figure 3
below. This graph was not derived using the H-function
curve-fitting procedure. As seen in Figure 3, a line will

be used to represent the H-function data. The actual data
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Figure 3. Sample graph

will be plotted as individual points. The estimated MSE can
be found in the upper right-hand corner of the graph.
The thesis procedure used input decks like the follow-

ing for a Gamma (8=3, @=2) with the amount of data equal to

twenty:




-
4

.20

100=0y1y0y0p1737.v20

e O
AN
., l.‘ .

110= 2500 V1514326649
120= L5000 L34678794412
ai 130= . 7500 V50204284073
- 140= 1.0000 ) V5413411329
150= 1.2500 L5130312414
160= 1.5000 . 4480836153
170= 1.7500 ‘3699179449
180=  2,0000 L 293050202022
190=  2,2500 V2249571799
200= 2,5000 . 16844846750
210=  2.,7500 L 1238248340
220=  3,0000 .0892350734
230=  3.,2500 . 06352030579
240= 32,5000 L0446822163
250=  3.7500 L0311109958
240=  4,0000 V021446960872
270= 4,2500 L0147005397
200=  4,5000 L 0099741941
290=  4,7500 V0047353774
300= 55,0000 , 0045399930

310=2,1234
320=1,2345

PR
B O

LS
".
“e

-
-

Line 100 contains FLAG, M, N, P, Q, TYPE, GUESS, and NUM.
Lines 110 through 300 contain the type 3 data. The remain-
ing two lines are the initial guess of the H-function param-
eters. Thes>» data decks were input into the program named

THESIS which produced results such as

RESUILLTS OF ZISFOW -
NUMERATOR?
SMALLE(1)= 1.1814637000173734891
RIGR(1)= » 790076183377332288
LDENCMINATORS

VALUES OF K & C ARE:
K= 1.11220469774287968457
C= 1.102019335254971246¢%
FNORM= »0D00DNQBO000NTRO0D




.........

FNORM 1s a measure of how close the estimated root vector,
X, 1s to the true solution of the system of equations:
2(P+Q)

FNORM = Y  [F;(%)12
i=1

th

where F; is the i nonlinear equation. These results were

then converted into familiar H-function notation such as
10
(1.11221) H [(1.10202)x::(1.18164, .79008)]
01
Once this was done, the estimated H-function was evaluated
for the same values of x as the actual data. Then both sets
of paired data were graphed in Figure 4A.
Other figures for small and large amounts of data were
created using th. -ame procedure. They can be found in the

following lists:

First Order Statistical Figures
1. Gamma (&=3,3=2) 4 A/B
2. Exponential (@=1/2) 5 A/B
3. Chi-Square (8'=4) 6 A/B
4. Weibull (8=3/2,0=1) 7 A/B
5. Rayleigh (90=4) 8 A/B
6. Maxwell (e=2) 9 A/B

7. Half-Normal (&=1) 10 A/B
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Second Order Statistical

1. Beta (6=2,0=3)

2. Power Function (&=3)
3. Uniform

4. Half-Student (&=16)

5. Bessel (o=1,0=1)

First Order Functional

1. Generalized Gamma Function
(b=1,B=1/2)
2. Generalized Gamma Function

(b=1,B=1)

Second Order Functional

1. zP (b=2) 18 A/B
2. zP (b=1) 19 A/B
3.  zP (b=-1) 20 A/B
4.  2zP(1-2)*3 (b=1/2,a=1) 21 A/B

5. zP(1-z)%3 (b=1/2,a=2) 22 A/B

The figure number can be used to reference the correct
graph. The graphs were kept together and placed in Appendix
D for quick comparison.

In addition to Appendix D, Table IV summarizes the
estimated MSE for each figure. The low estimated MSE for
each graph demonstrates the ability of the H-function to fit
various sets of raw data. Another reassuring finding 1is

that the H-function fits better when more data is availabie.
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TABLE IV

Estimated Mean Squared Errors

AMOUNT OF DATA

Figure
Small Large
4 A/B | 0.0000658751 { 0.0000003710
5 A/B | 0.0003411134 { 0.0000588732
6 A/B | 0.0000153797 { 0.0000001745
7 A/B | 0.0005039677 { 0.0000054808
8 A/B | 0.0001306474 | 0.0000000673
9 A/B | 0.0000007455 { O.0000000006
10 A/B | 0.0021639213 | 0.0001184473
11 A/B | 0.0018068877 | 0.0000004352
12 A/B | 0.0027320795 | 0.0000056500
13 A/B | 0.0052858926 | 0.0016352035
14 A/B | 0.0014194577 | 0.0002971406
15 —— 0.0000537173
16 A/B | 0.000103811l1 | 0.0000000003
17 A/B | 0.0000673331 | 0.0000006979
18 A/B | 0.0002744282 | 0.0000006392
19 A/B | 0.0006307255 | 0.0000010364
20 A/B | 0.6901255958 | 2.0283752311
21 A/B | 0.0029725091 | 0.0000013842
22 A/B | 0.0029537131 | 0.0000013089
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@$ This can be seen when the estimated MSE values for large
amounts of data are lower.

Demonstration Runs

3335 The list above covers many statistical distributions
§?ﬁ and mathematical functions. 1In fact, all first order sta-
tistical distributions listed in Chapter 2 were run (Figures
4-10). For second order statistical distributions, those
without restrictions on the distribution parameters were run
(Figures 11-13, 15). 1In addition, the second order half-
student distribution was run as a first order distribution

to analyze the effect of underestimating the true order

(Figure 14). Finally, a group of first and second order

?fg mathematical functions with various shapes was run (Figures
ég% 16-22).

o All the runs above were done with type 3 raw data. The
éﬁ; program could also be used with previously calculated per-
L?if fect moments to demonstrate the special properties of the H-
ﬁa; function discussed in Chapter 2. The input decks differed
iﬁ% slightly because the type 3 data was replaced by a single
?ﬁg line of perfect moments.

The reduction properties were demonstrated as follows.

Perfect moments were derived for an exponential (@=1/2).

For the first red-ction method, an "A" gamma function in the

denominator had to have the same parameters as a "B" gamma

,".1;‘
Yo%

,5‘ function in the numerator. When these two cancelled, an
b . yﬁ"

g additional correct "B" gamma function had to be left in the
e
g!an ‘\"g
.::):;“;“ 89
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K43
4‘_“'7
o 20
}‘s numerator. The input deck for the kH fcx] looked like
ok 12
Thd 100=042,0,1,2,0,0,8
1 110=1,2,8,48,384, 3q40 46080 6435120
oY 120=,342
M 130=1.316

) 140=2,222
% 150=,106
ks, 160=2,987
e 170=,543
153
Bhat
e
N The results from THESIS were
ol
vitjﬁ;'

: RESULTS OF ZSFOW -

Y NUMERATOR ¢
%ﬁ SHALLE(1)= -.000000107534485133
;S; BIGR(1)= +99999984635146114250

5 SMALLER(2)= 2.77215837711462925918

] RIGR(2)= +856711887061141653

DENOMINATOR !

1 SMALLA(1)= 2¢7721537300344659702
%ﬁ BIGA(1)= «8356711753324448341
y;
i VALUES OF K & C ARE:

‘ K= - +499999821510282771

C= +499999977412008079

. + FNORM= +0000000000000008%9
T Note the nearly equivalent parameters in the numerator and
ﬁ; the denominator. When reduced, the second order H-function
i
b ‘
ﬁ% approximated the true first order H-function of
Ea'yl
L L 1o
- — X3:(0 1 .
.y 7 85 1 [7 3:(0,1)1
"
o
X
qi Therefore, the first reduction method worked.
;,h}
33
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Ay
‘?gi The second reduction method works when an A; or Bj
el ¥ vanishes. For the same exponential distribution, the input
- lo0

:i’: deck for kH [cx] was
N 11

100=09110y1y1109096
110=1,2,8,48,384,3340

QZ; 120=,342

) 130=1.316

N 140=2.222

- 150=,106

.'.-'

s

§E The results from THESIS were

X

. RESULTS OF ZSFOW -

Ty NUMERATOR :

238 SMALLE(1)= +000000000070760199

20 BIGE(1)= 1.000000000109487530

22 DENOMINATOR:

X SMALLA(1)= 4,035573643344462287
BIGA(1)= ,000011372100772754

¥ 2 R

-

VALUES OF K &8 C ARE:

O i

A K= 3.137655798202459323
'R C= +499992800457203418
! FNORM= +000000000000000000
N

-
Z) Note the A; in the denominator is approaching zero. There-
§

A
' fore, the "A" gamma function was essentially a constant
o r'(4.036) term in the denominator. This term was evaluated
Y
\.j to be 6.279. When brought out of the integral and under the
Thi
| €
j k, the true k became 3.138 divided by 6.279 or 0.4998. This
:{-.j approximated the true first order H-function so the second
) &“

S:-‘ reduction method also worked.
e,

—————
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Next, the generalization of the uniform distribution

10
was demonstrated. The input decks for kH [cx] were
11

100=0y190,111y0!096
110311057033333333'025'027016666667
120=,14567

130=.946543

140=1,23454

130=,9146432

and

100=0,1,0,1,1,2,0,6

110=1, .5,y e 33333333,425, +2y 1564466667
120=.675

130=2.,111

140=,337

150=1.,998

Note that only the initial guess of the H-function parame-
ters was changed. The first initial guess gave results from

THESIS as follows:

RESULTS OF ZSFOW -

NUMERATOR?

SMALLE(1)= +000001122240934309

RIGE(1)= 1.,008844174078524911
DENOMINATORS

SMALLA(L) = 1.000006384974028606

BRIGA(L)= 1.,008845002792270966
VALUES OF K &8 C ARE?

K= 1.008864845751389794

C= +9999968377389256358

FNORM= +000000000000015405
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These results were close to the nongeneralized uniform
10

distribution H [x:(1,1); (0,1)].
11

When the initial guess was changed, the results became

RESULTS OF Z%FOW -

NUMERATOR? '

SMALLE(1)= +0000827850378T7461

RIGER(1:= 15.4286373569366727736
DENOMINATOR?

SMALLA(L) = 1.0000926708271046294

RiGA(1)= 15.426641384669039780
VALUES OF K & C MRE®

K= 15.427045040837867873

C= »9799883154673520429

FNORM= +000000C000C 008517

These results demonstrated the generalized uniform distribu-
10

tion uH [x:(1,u); (O,u)] where u=15.427. Looking back
11

at the first uniform, this also was generalized but u=l.009.

When these two specific H-functions were evaluated for

x values, the following results were obtained:

923
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1;
R u=1.009 u=15.427
5 |
' + 0500 » 299999 + 0500 999999
T + 1000 1.,000000 +1C000 1.,000000
§ﬁ +1500 1,000000 + 1500 1.€00060
X +2000 1.000000 + 2000 1.000000
%ﬁ + 23500 1.000000 + 2300 1.0000090
e +3000 . 999999 +3000 1.000000
) +« 3500 e 999999 + 3500 799979
RN + 4000 799999 - + 4000 999999
i' + 4500 . 999998 +4500 + 999993
h 3 + 5000 . 959998 +S000 1999997
N + 5500 + 999998 + 33500 2999996
i + 6000 1999997 +6000 +?P9995
+ 6500 999994 + 6500 799974
s + 7000 . 9996095 » 7000 299992
a8 17500 .999995 7500  ,999991
W +8000 1999993 +8000 799989
oy . 8500 1999991 + 8500 1999987
Mt + 2000 999987 + 2000 999985
Ny + 2300 + 999984 + 9300 . 799982
LY 1.0000 1999959 1.0000 $ 999979
2k
SN
%
L Both H-functions were a good approximation to the uniform
Ao distribution.
e
~, The generalization of the Pareto distribution (©=6) was
Ly o1
. also demonstrated. The input deck for kH [cx] was
e 11
i
.-‘j
) 100=0,0,1,1,1,0,0,6
— 110=1,1.2,1:.5,2,346
P 120=-5,654
W 130=1,112
3 140=-7.174
"~ 150=,987
)
3
N
R
‘e
R4 %4
£
X
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This gave results from THESIS of

RESULTS OF ZSFNW -

NUMERATOR?

SMALLAC(L) = -3.8327876T5700494791

RIGA(1)= +690398445680816764
DENOMINATOR

SMALLR(1)= ~4.,832794475434635025

RIGER(1)= +690398684011771735
VALUES OF K & C ARE?

K= 4,142424973174115621

C= 1,000001072468101881

FNORM= +G00000000000014109

These results demonstrated the generalized Pareto distribu-
01
tion ueH [x:(1=-u(1+8),u); (-u(l+e),u)] where u=0.6904.
11
The H-function was then evaluated for x values. These

data pairs were then compared to an actual Pareto

distribution with ©=6:

1.2500
1.5000
1.7500
2,0000
2.2500
2.5000
2,7500
3.0000
3.2500
3.5000
3.7500
4.0000
4,2500
4,35000
4,.73500
9.+0000
5.2500
9.5000
57500
6.0000

1.258287
¢ 351166
v 119367
+ 046873
» 020553
+ 009830
» 005045
002743
20013567
+000933
» 000575
+000366
+ 000240
+000141
+000110
+000077
+ 000055
+ 000039
+ 000029
+ 000021

1.2500
1.5000
1.7%500
2.0000
2.2500
2.5000
2,73900
3.,0000
3.2500
3.3000
3.7800
4.,0000
4,2300
4.3000
4,7500
S.0000
5.2800
J.5000
57800

6.0000

95

1,258291
1231164
0119367
+ 0446875
+ 020553
+ 009830
-0035045
+ 002743
»001567
+ 000933
+ 000575
+ 000356
000240
+0001461
+000110
+ 000077
+ 000055
+ 0000329
+ 000029
+ 000021
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The estimated H-function produced a good fit to the actual
distribution.

Now that some properties have been demonstrated, the
usefulness of the program is apparent. One further run may
emphasize this point. While attempting to produce an exam-
ple for the reduction property, the following input data
deck was used

100'-"0’1,0?1,1,0’076

110=1,2,8,48,384,3840

120=,342

130=1.316

140=2,222

150=,88%

The results of THESIS were

RESULTS OF ZSFOW -

NUMERATOR?

SMALLE(1)= ~+000000002439904119

BIGB(1)= 2,0000000304682542729
DENOMINATOR?

SMALLAC(L) = + 499999955 70E995097

BIGA(1)= 1.0000000308094658824
VALUES OF K &8 C ARE!

K= 1.772453848441800751

C= 2+.000000041492725700

FNORM= +000000000000000000

We were expecting to see an A, near zero. Instead the

10
program produced 1.772 H [2x:(%.,1); (0,2)]. But the per-
11
10
fect moments were from % H [%x:;(o,l)]. At first glance,
o1

the two H-functions did not appear to be equivalent.
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However, using rule 6.1.18 from Abramowitz and Stegun
(2:256) and the fact that k=¥T, the two H-functions were
shown to be equal:

10

y*u  [2x:(1,1); (0,2)]
11 2

=y 1. f [128) (2x)-s as
ﬂZﬂ‘l c r(%_‘_s)

2s 1
e f 228[(s) [(z+s)
c V2 fga'[“(%+s)

(2x)~8 ds

= 1 s-1 -S
38T jC (28=4)[(s) x~% 4as

1 1 lyy-S
3 7T fc [(s) (5%)7° as

10
H [ixz(Oll)]
o1 2

N~

In a less theoretical approach, the H-function was
simply evaluated for values of x. The results that follow
correspond exactly to an exponential distribution with

g=1/2:

97

P

LR T I A T o a o F AP P VL R A R TR L)
NP LR I RGER LA 1A WS TR RS\ SAGABAS LRI AR Y




....................

a o . .
9
A
s
v
r
»
’
’
re
’
1 4

>
N
< + 7500 343445
3 1.35000 236183
S 2,2500 1862326
2 3.7500 L076677
2 4.35000 + 052700
- 35.2500 + 036220
b 6+0000 024894
b 6.7500 2017109
3 7.+3000 011739
=q 8.2500 . 008082
fg 9.0000 + 005554
bl 947500 003818
N 10.5000 002624
11.2500 .001803
A 12.0000 + 001239
12,7500 + 0008352
o 13.3000 + 000335
‘ 14,2300 +000402
A 15,0000 000277
Y This concludes the discussion about the results of the
o
'Q‘ thesis. More detailed conclusions about the efficiency and
. effectiveness of the H-function curve-fitting procedure
a follow in the next chapter. Also, new findings are

)

highlighted and further studies are recommended.
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VII Conclusions and Remarks

Summary

We have developed a procedure to estimate the param-
eters of the H=-function which gives the best fit to a set of
raw data. The procedure uses the method of moments and can
be used with both mathematical functions and continuous
statistical distributions defined over positive x. Our
computer program will accept univariate data, data pairs, or
moments previously calculated from data. The user has the
option of using the zeroth moment or beginning with the
first moment. The user can supply his own initial guess of
the parameters or allow the program to use a default initial
guess. The program automatically checks the initial guess
and final estimate of the H-function parameter. against the
convergence conditions of the H-function. If the program
should stop before completion, it also has other diagnostic
checks built in which will give the user some indication of
the error which caused the program to abort. If no errors
are found, the program will output the parameters of the
fitted H-function.

The method of moments does not always produce the

"best" estimates of a distribution's parameters. High

moments calculated from data tend to be inaccurate. Fur-
ther, moments do not uniquely define a distribution. Still,
our experience ris shown the method of moments to be an

effective way to estimate the parameters of the H-function.
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Because the analytic moments of an H-function are easily
derived using the Mellin transformation, the equations of
the method of moments can be simply written.

We used an IMSL routine named ZSPOW to solve these
nonlinear equations for the unknown parameters. ZSPOW con-
tains Powell's gquasi-Newton hybrid algorithm for systems of
nonlinear equations. This method requires a reasonably
close initial guess and does not guarantee convergence but
these restrictions are common to most techniques. Powell's
method. also provides super linear convergence.

The estimated H-function parameters can be adjusted
using Table III if a named statistical distribution was
desired. Alternatively, they could be used as inputs to
another computer program (7:Appendix B) which would calcu-
late £he H-function at certain values of x and plot the
probability density function (p.d.f.) and cumulative
distribution function (c.d.f.).

We tested our procedure using many mathematical func-
tions and statistical distributions. The results were
impressive and are presented in Table IV and Appendix D.

Since many mathematical functions and statistical dis-
tributions are simultaneously considered when the H-function
is fit to a set of data, fewer separate tests are required.

This generalization alone will increase the efficiency of

curve~-fitting and density estimation.
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Another benefit of simultaneously considering many
functions and distributions i: that there is a higher proba-
bility of finding the function or distribution which "best"
fits the data. Thus, effectiveness increases when the !
generalized method is used.

New Findings

We made several contributions to the theory of H-
functions. We discovered a new reduction property for H-
functions. We corrected typographical errors in Mathai and
Saxena (26) for arcsin(z), arctanh(z), and log(ltz). We
gave generalized H-function formulas for the logarithmic
function log(z) and power function zP. We showed that the
Pareto p.d.f. can be expressed as an H-function. Finally,
we generalized the H-function formulas for the Power Func-
tion p.d.f., the Uniform p.d.f., and the Pareto p.d.f.
These new results were presented in Chapter 2 and the
details that are not obvious are presented in Appendix A.

Recommendations for Further Research

Because the c¢.d.f. of a random variable with an H-
function distribution is simply one minus another H-
function, this constraint could be added when fitting a
density. Fitting both the p.d.f. and c.d.f. could enhance
the power and versatility of the H-function method.

Further research is also needed to develop maximum

likelihood estimates for the H-function parameters. The
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derivation was started and can be seen in Chapter 3. Our

resalts need to be extended.

Modifications to our program could also be made to
allow certain parameters to be fixed throughout the IMSL
routine ZSPOW. For example, the user might find that after
the first run is made, B=.97. He might want to fix B=1 and
solve for the other parameters, given this constraint. We
could not provide this option easily because ZSPOW does not
allow a variable to be altered within the subroutine that

defines the system of nonlinear equations.
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Yy APPENDIX A
,)‘:
N
N Outlines of Proofs of New Findings
¢
NN
:R The purpose of this appendix is to outline proofs which
AR
) verify our new theoretical results. Although these proofs
¢
f{b are not central to the purpose of the thesis, we felt com-
ie -
ri pelled to verify our new findings so that others might
2 N
. further extend the H-function theory.
R Throughout this appendix it is assumed that the reader
%j thoroughly understands the process of evaluating contour
o~ integrals in the complex plane by summing the residues at
33 the singularities (or poles) of the integrand.
;L Corrected Mathematical Functions
P
\ in(z) Ly Lizsubnb; (L), 0.1)]
arcsin(z) = - zs3 = =): (=,2 =
:: T T, 5 2702 2'2°" T2
Ny
. D=1 E=0 L=-.g- R=1
.
40 type VI +) LHP residues for [z| <1
)
5
“;;" -). RHP residues for |z| > 1
i 12
Y ; 1 1 11 1
AN iz:(1,= 1,2): (== 0,=
e - 2[ ( .2). ( .2) (2.2). ( .2)]
L)
ey
» L [Miedeyrm-te2
by = 2 2 2 (iz)~8 ds
;‘J‘ Cc 2
¥
ﬁu numerator poles can be separated
4
_— by any w in the open interval (-1,0)
3
b
¢ 103
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................

rkéﬁés) has poles of order 1 at

sJ=-(2J+1), J=0,1,2,...

(s-sJ)rK§+§s)£r(-%s)J2

£5(s) = (iz)~%
_1
(1 55)
(s+2J+1 )r‘(%.+%.s+J+l )L -%.s) 12(iz)"s
(1 +_s)( +Es+1)"'(1+%s+J)( _s)F(- s)
ZFY +_s+J+1)rW—_s)(lz) s
(1+—5)°"(l+58+J—1)(-_s)
2J+1
£(s;) = 2[(3+3) (iz)

arcsin(z)

(-1)J9 J1 (J+ )

- Zir'(J-b%)zzJ +1

Ji (J+1
( 2)
_ g 1 Z zlr'(J_'.l)zzJ-l'l
ZyF 3L
J=° J1 (J+_2.)
(0 o]
-Er_' Y 5i(1.3.5...(20+1))¥F 220+l
J=0 29+l (J+%) JI(J+%)
(0 0]
% Y 1.3.5...(29+1)z2J+1
J=0 279 31 (T+3Y
1,3 1.3 .5 1.3.5 .7
+ VA + e + s
233 3.4.5° | 7.4.6.7°

which is the infinite series for arcsin(z). The proof is

similar for |zl » 1.

LS T b

104

SCGLEERALAHSEIEAINAIRIT 1525 1550 Vi K St SN M 3 e

2]



e -l -
MWL X

ErC

&
a4l

M S,

ARXEAN

*t ¥

o
&L

'.C}S"t'

o y

L3 P
- g

g.h.- DA A

A

e LT et Wy N LS S I A S S R A A e . B A A S LA

. 1 2
arctanh(z) = -1 g [iz: (1.l), ( Ly (L, (0.d1
7, , 2" 22 2
D=1 E=0 L = <=1 R=1
type VI  +) LHP residues for |zl < 1
{z RHP residues for |z| > 1

12
izs(1,1 11 1
B [iz:(1,3), (—.—) (550, (0,3)]

2 2
1.1 21 1_1
. fl‘(f.z.s)l“( Le)[(1-Ls)
2m e F(l-%s)

(iz)~8 ds

numerator poles can be separated

by any w in the open interval (-1,0)
FY%#%S) has poles of order 1 at
sg=-(2J+1), J=0,1,2...

2[( +_s+J+1)rKl _s)(lz) 8
.fJ(S) =

( +_s)...( +§s+J-l)(-ES)

£5(s5) = zrka+1)(1z)23+1
(-1)9 g1 (J+—)

ai z2J+1
2J+1 .

i1 4i z2J+1
tanh = e o ™
arctanh(z) 7 7T 2 ljio__aﬁzﬁf_.
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which is the infinite series for arctanh(z).

similar for |zl| > 1.

12
log(i¥z) = 8 [%z:(1,1), (1,1); (1,1), (0,1)]

2 2
D=2 E=0 L=-1 R=1
type VI  +) LHP residues for |z| < 1

-z RHP residues for |z] > 1

1l 2
H [(fz:(1,1), (1,1); (1,1), (o,1)]
2 2

- 1 [Lass)tl=9)1% (£;)-5 as
|?l-s$

201 c

numerator poles can be separated
by any w in the open interval (-1,0)
[(1+s) has poles of order 1 at

SJa-(J"'l), J=0, 1'20 oo

£5(8) = o lirsrasn)([-8)1%(52)"

(1+s)(1+s+I)...(1+s+J-1$|Tl-sS

- C+sta+1)[(-s) (¥2)”
{1+s)(1l+8+1)...{1+8+J3-1)(-5)

£,(s,) = Cla+1) (22)7"
(- 1)JJ1(J+1)

- (tz)J+l
(=1)9(J+1)
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o J+1
log(1¥z) = _1_ | omi Z (+2)
2mi J%0 (-1)J(3+1)
_ g? (+z)J+1
J=0 (-1)9(J+1)
2 3 4

log(l+z z -2 +2 _z 4, ...
g(i+z) = 2 3 T 3
log(l=z) = -z - 2 -2 _z _ |
og(l-z) z - 3 3 7
which are the infinite series for log(l+z) and log(l-z).

The proof is similar for |z| > 1.

Generalized Mathematical Functions

20
log(z) = -u? g z:(1,u), (1,u); (O,u), (0,u)]
2 2

D=0 E=20 L = =2 R=1
type VI  +) LHP residues for |z| < 1

no RHP singularities

2"'1 c [r(1+us)]2
= ~U f 1 z s ds
c (us)2
-1 [ l -8
2®l c s2
o -1 f C(8)1% -8 4
2 o [[(1+8)72
107
o o N A e D I N T i e e e A I e A A AT




A

AR e - 4N

-

s

%2 1% s

<
L 3 §

»

&
-

P A

<

A.-.u.l'"q

.}¢_.,.%V

1. 0F
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o b Anen ot F

2

4%

1

0 2
log(z) = w2 H [z:(1,u), (1,u); (O,u), (O,u)l
2 2

D=0 E =20 L = =2 R=1
type VI no LHP singularities
—}: RHP singularities for [z] > 1

2 2
log(z) = U_ jr [[ (-us)] ,-s g4
c

[[M(1-us)]?

]
e

-

2
= _4U_ j — 1 2-s gs
c (-us)?

s AR AREARA R N Lk SN . Cte’s a3 it Sl L Sk o) A AR AN DAL AL S |
20
= -H £z=(111)0 (101)7 (Oll)l (Oll)]
2 2
0 <z <1
Q. E. D.

2
= ___l_._/ [ (-S)] z-S ds
2ni c [rkl_s)]2
0o 2
= H [z:(l.l), (lnl)? (011)0 (oll)]
2 2
z > 1
Q. E. D.
Statistical Distributions
Power Function p.d.f.
f(xle) = ex®-1 0 <x <1
e > 0
l10
= ueH [x:(u(e@=1)+1,u); (u(e=1),u)]
11

D =20 E=20 L = =1 R=1
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+Z: LHP residues for |x| < 1

no RHP singularities

f(xle)

ue rku(e—l)+us) x ° ds
2mi J, | (u(e-1)+l+us)

= _ue 1 -s
Zmi jz (a(e-1)#usy * I8

e 1l -S
2mi j; 8-1+s X ds

= 2 {2ni x(1-9))

ox®-1 Q. E. D.

Note: This generalization also applies to the mathematical
power function z°.

Uniform p.d.f.

f(x) =1 0 ¢ x <1
10
=uH [x:(1,u); (O,u)l
11
D=20 E=0 L ==1 R=1
type VI +z: LHP residues for |x| < 1
no RHP singularities

u j( I(us) x‘-s ds
21l c 1+us

£(x)




Pareto p.d.f.

£(xle) = ex~®"1 x> 1
e > 0
01
= 6H [xz(-ell)7 (-e-lll)]
11

D=20O E=0 L= -1 R=1
type VI no LHP singularities

-z: RHP residues for |x| > 1

- (] r‘(l+e-5) -S d
E(xle) 2mi r‘(2+e-sT x s
- © 1l -8
2m1 JC 1+6-8 x ds
= _____,e ™5 °(l+9)
ST {2ri x }
= px~ 91 Q. E. D.

Pareto p.d.f. (generalized)

f(xle) = ex~©"1 x > 1
®@ >0
o1
= ueH [x:(1~-u(1+8),u); (-u(1l+e),u)l
11

type VI no LHP singularities

-z: RHP residues for |x| > 1
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o £(xle) = _ue [C(u(1+8)-us) 4-s 44
e 2mi J, [(I+u(1+8)-us)
- = _ue 1 x~S% ds
. 2w c u(l+e)-us
‘N

.
0
|o

) 1 x-8 as
LS L Jo l+©-8

2wl
}'\
)
= 8 {2mi x~(1+8))
. 2ri
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APPENDIX B

Advanced Mathematical Functions and

Statistical Distributions Expressed as H-functions

The H-function also includes as special cases several
advanced mathematical functions and statistical
distributions (26:10-12,145-159; 37:205-206; 7:41-43,87,93).

Mathematical Functions

Bessel Functions:

1 z,(v,1), (-v,1
Tol=) = 32D, (D)
20
= 1 zZ, (v 1 v
1 20 z v+l 1 v vl vil 1

Yv(z) = -2— Hl 3 [33(-705)7 (50-2—)0 -2—1-2-)l (—'—2—15)]
u 10
J (z) = H [z:(0,1), (-v,u)]
v o2

(Maitland's generalized Bessel function)

Hypergeometric Functions:
11
(bl y  [z:(1-a,1): (0,1), (1-b,1)]

[[ta) 1 2

(Confluent Hypergeometric function)
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1 2
= [ g “rz:i(1-a,1),

(1-bll)7 (Oll)l (l-cll)]

(Hypergeometric function)

q
Ty 3
pFq ({ajl:{bjyli-2) = lgl-——- H Lz:{(1-a;,1)}:
frgr(ai) P atl
=

(0,1), {(1-by,1)}]
for p<q or for p=g+l and |z]|«<1.

(Generalized Hypergeometric functions)

{( 'IA')}
ot [{(§§,B;)}’ ‘z]

1
= H
p g+l

[23{(1-aiIAi)}7 (oll)l {(1-blej)}]

(Maitland's or Wright's Generalized Hypergeometric functions)

MacRobert's E-function:

E(p;{aj}sqsibyls2)

p 1

= H

EZ:(lll)l {(blej)}7 {(ailAi)}]

q+l p

Meijer's G-function:

m n
G [z:{ai}
P q {bj}
n n
= H
P 4

Cz:{(a;,1)}; {(by,1)}]

113




[
.

()
[
LU

R

DDA “n - 8
DA
L & 'l “ '.

.
L R}
0
.
»

AN
: SONENE A

Statistical Distributions

Bessel p.d.f.

= _2_ X

|
[

20
= —0- H
2

268 o 5 260

General Hypergeometric p.d.f.

c
= c
da?d [N(p) [Mr-3) x°~1M(b,r,-axd)

f(xla,b,c,d) =
M@ Mo-5) [x)
1 c, 11 %
= a9 r(r-g) H [adx:(l-b+sél'%):

M$re-5 2

(¢=1,1,, (1-r+S'_£,é.)] x>0

d 'd d
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APPENDIX C

Computer Program
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o FROGRAM THESIS
(A' KKK KKK KKK KK KKK KKK KKK K KKK KKK KKK K KKK A KKK KKK KKK KKK K
o XX : XX
R Xk WRITTEN EY: 1LT RALFH A. ROEDIGHEIMER XX
- XX ILT CARL D, ROLENSCHATZ XK
- XK MS THESIS  GOR-83L XK
s 3 KK
KX AIR FORCE INSTITUTE OF TECHNOLOGY XX
o XX SCHOOL OF ENGINEERING 3
- KX WRIGHT-FATTERSON AIR FORCE EASE, OHIO XX
Wy XX KX
;E KR KKK IR KKK KKK KKK IR KK KKK KKK IR KKK KA KK KKK AR KKK KA KKK KKK K
W
\ KKK KKK KKK KKK KRR KRR KK AR A K IOOK KKK KRR K ACKR KRR IOR KKK KK K
i) b3 XX
) *K PURFOSE: THIS FROGRAM ESTIMATES THE FARAMETERS XX
-2 XX OF THE H-FUNCTION THAT GIVES THE BEST XX
bar KK FIT TO A SET OF DLATA, KK
> L3 XX
A XX INFUT/0UTFUTS TAFEB/TAFE2 KK
o XX KX
PN XX NOTE: THIS PROGRAM IS WRITTEN IN FORTRAN 77. KX
Y XK IMSL MUST BE ATTACHED PRIOR TO RUNNING XX
: XX THE FROGRAM FOR CALLS TO ZSFOW & GAMMA. KX
3 XX
| KKK KKK KKK K KKK KKK IR KKK IOK RO KKK IR AR KKK KKK KKK KKK KKK
\‘
a0 KEKKKKK KKK KKK KKKKKKK KKK KKK KKK KKK KKK KKKKRKKKKK KK KKK KKK KKK
> X% b 3
o KX FLAG = 0 IF THE ZEROTH MOMENT IS USED XX
“ XX = 1 IF THE ZEROTH MOMENT IS NOT USED XX
XK M = THE NUMBER OF *E* TERMS IN THE NUMERATOR KK
- XX N = THE NUMBER OF *A* TERMS IN THE NUMERATOR XX
3 KK P = THE TOTAL NUMEER OF "A" TERMS KK
o KX @ = THE TOTAL NUMRER OF *R* TERMS K3
) XK TYPE = 0 IF MOMENTS ARE INFUT XX
& XK = 1 IF UNIVARIATE DATA ARE INFUT KX
~ XX = 2 IF ORDERED PAIRS FROM A RELATIVE KX
- KX FREQUENCY ARE INFUT Kk
AN XX = 3 IF ORDERED FAIRS FROM A FUNCTION KX
o 3 ARE INFUT xk
) 3 GUESS = 0 IF THE USER WISHES TO SUFFLY HIS XX
' XX OWN INITIAL FARAMETER ESTIMATES XX
o XX = 1 IF DEFAULT INITIAL GUESSES ARE DESIRED XX
et XX NUM = THE NUMRER OF MOMENTS IF TYFE = 0 Xk
o XX = THE NUMBER OF DATA FOINTS IF TYFE = 1 KK
2 XX = THE NUMBER OF DATA FAIRS IF TYFE = 2 OR 3 *x :
o xx XX :
o KKK KKK KKK KKK KKK KKK KKK KKK K KA KKK KKK KKK KK KKK KKK KK KKK KK
. !
o
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!..'
N

.‘-‘
AR

LA

K KKK K KN SO KKK KR ECIOICR ORI OK KKK SKOKOK KK KOKOK ACICKCRKCHOICICROOK KR %0l

b $

XX THE DATA MUST RE INFUT IN TARES IN THE FORM:

XX 1) FLAG,MyN,F,Q,GUESS,NUM (ALL INTEGER)

L 3 2) DATA (REAL) -

X% A) TYFPE O - 2(P+Q)+2 MOMENTS FROM

X% LOWEST TO HIGHLST

xX BY TYPE 1 - NUM UNIVARIATE LATA

XX C) TYFE 2 OR 3 —- NUM DATA FALRS IN

xX THE FORM X,F (XD

*xX 3) INITIAILL GUESSES (REAL) -

xx A) GUESS OF 0 - 2(F+Q) FARAMETERS:?

XX "R* FAIRS IN NUMERATONR

L 2 "A' PAIRS IN NUMERATOR

L 3 8 *B* FAIRS IN DENOMINATOR
XX *A® FATIRS IN DENOMINATOR
b % B) GUESS OF 1 - NO INFUT NECESSARY

L $

K
L 98
XX
L $
b 8 4
Xx¥
L ¥4
X¥
xw
XX
xx
¥
XX
b g
ok
XX
XX

0K KK AOKOK KKK KR OKOK KK KCHCKOICKR KKK OKCICK KRR KRR KOk 3O OR KR ook ek &k

HOK K KKK ACKOK K KRR KKK IO KKK R AOK KKK KKK XK KACK KKK KK KKK R KKK Kk

XX

¥x EQS = THE NUMBER OF EQUATIONS & UNKNOWNS
XX IER = THE NUMEER OF ANY ERROR MESSAGE

XX ITMAX = THE MAXIMUM NUMBER OF ITERATIONS
*X NSIG = THE NUMRBER OF SIGNIFICANT NIGITS
*% FNORM = THE NORM OF THE F EQUATION VECTOR
xx PAR = A VECTOR CONTAINING FLAG,MsN,yF,Qy

E $ AND THE 22(F+Q)+2 MOMENTS

L X = A VECTOR OF VARIAERLES BEING ESTIMATED
3 (I.E. THE "A" AND "R" FAIRS)

XX

XK
XX
XX
XX
XX
XX
XX
XK
¥ X
XX
XX

KKK KKK KK KKK KK KK ACK KKK KKK K KKK AR KRR K KRR K KKK R KRRk

INTEGER CC,EQS,IER, ITMAX,NSIG,FLAG,MyNsF,Qy

B ) TYPE,GUESSyNUM, Iy JyKyLyTHU,V, U

REAL FNORM,FAR(0:16),WK(418),X(10),FAIRCA000,2),

+ DEV(4000) ,LELTAX, TEST»START1,START2, ANSUWER
KKK KK KKK KK KR KR KK KK KK K KK KKK K K KKK K K R AR KKK K SOR KCRKOK KK
XX XK
3 WK IS A WORK VECTOR WHOSE SIZE IS XX
xx DEFINED BY THE FOLLOWING FORMULAZ XX
XK SIZE = (EQS/2)%X((3XEQSY+13) XX
xx XX

002K 3000 K050 4040500 0 00000 KKK K OKORKOK KKK KK AR OR KKK OKKOK 3K 0K K K

EXTERNAL FCN,COMFIS
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AN %4\ Y P

P

»

ot T
sTatmTats

LR 1

b " a e a2 s

0 N

1R
P S W

WIORRERRN 15

HNLE

5%

1al’

TASYSENS

-

3
WAl
.

o

2 I RPN LT L v N
’ A 1

0O ROK KK ORCOICACIOIOK SOOI KOOI OK 0 ek ek i X

xX P
b & ¢ AlLL UARTIARLES aARF INITTALIZEN, KA
XK XX

KKK HOK K KKK ACK 0K SR K OKCHORKOIOKK RO RCICKOROR KRR R K

READ (8,X%) FAR(O).FAR(L) FARI2) yPAR(3) ,FAR(A),

+ TYFE ,GUESS y NUM

FLAG=FAR(D)

M=FaR(1)

N=FAR(2)

F=FAR(3)

Q=FAR(4)

EQS=2%(F+Q)

NSIG=3

ITMAX=200
K KK K K KK AN K NOK KK K KK KKK KK KK 0K I KK OO KRR KK
XX KX
XX THE INFUT FARAMETERS OF FLAG,M.NyFy, AND Q X%
KX ARE CHECKED AGAINST SOME CONDITIONS. XK
XX XX

230 30K N KKK K R SRR K KK KK K KKK KK ROK KKK K ORKOR K OO KO

IF ((FLAG.NE.O) . .AND.(FLAG.NE.1)) THEN
FRINT %,/ FL.AG MUST BE EITHER 0 OR 1.~
GO T3 7999
ELSEIF ((M.GT.Q).0R.(M.LT.0)) THEN
PRINT %,’ M MUST RBE RETWEEN O AND Q, INCLUSIVE.’
60 TO 999
ELSEIF ((N.GT.F).OR.(N.LT,0)) THEN
PRINT %y’ N MUST BE BETWEEN O ANI F, INCLUSIVE.-
GO TO 999
ELSEIF (((P+Q).GT.3),0R.({(F+Q).LT,1)) THEN
FRINT %x,’ (F+Q) MUST BE BETWEEN 1 AND S5.°

GO TO 9299
ENDIF
HCRAHOK AR KORARCACRORIOKR KK CRORBORAOKROROKRR KRR RO oo sk okekokeek
XX XX
XX THE MOMENTS ARE REAI IN FROM Ta&FE 8. IF X
X% ONLY RAW DATA ARE AVAILAERLE, THEN THE Xk
XX MOMENTS ARE CALCULATED. X
XX X

0 K0 KK OROKOK KK K KK KK KKK OR K OICK KR 0K OR SOR SRR R KR 0k
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A IF (TYFE.EQ.0) THEN
Y IF (NUMJ.NE.(EQS+2)) THEN
’ PRINT %,/ THE NUMBER OF MOMENTS .IS INCOLRECT.’
GO TO 999
ENDIF

READ (8,X)(FAR(I+4),I=1,EQ5+2)
ELSEIF (TYPE.EQ.1) THEN
IF (NUM.LT.20) THEN
PRINT %,/ FEWER THAN 20 DATA FOINTS WILL-
FRINT %X,’ NOT FRODUCE ACCURATE MOMENTS.’
GO TO 999
ENDIF
READ (8,%) (LEV(J),J=1,NUM)
CALL MOM1(EQS,FLAG,NUM,DEV,FAR)
ELSEIF ((TYPE.ER.2).0R.(TYFE.EQ.3)) THEN
IF (NUM.LT.20) THEN
PRINT %,’ FEWER THAN 20 DATA FOINTS WILL’
FRINT X,’ NOT FRODUCE ACCURATE MOMENTS.’
GO TO 999
ENDIF
READ (8,%) ((FAIR(K,L),L=1,2),K=1,NUM)
HELTAX=FPAIR(2,1)~-FAIR(1,1)
DO 5 J=3,NUM,1
TEST=PAIR(J,1)- FPAIR(J-1,1)
IF (ABS(TEST-DELTAX) .GT.(.5E-5)) THEN
PEINT ¥,/ OELTA X MUST RE THE SAME.’
GO TO 999
ENDIF
CONTINUE
IF (TYPE.EQ.2) THEN
CALL MOM3(EQS,FLAG,NUMyFAIR,1.0,FAR)
ELSEIF (TYFE.EQ.3) THEN
CALL MOM3(EQS,FLAG,NUM,FAIR,ELTAX,FAR)
IF (FLAG.EQ.0) THEN
PRINT %,’ THE ZEROTH MOMENT IS ’,FPAR(S)
PRINT X,’ IF YOU KNOW THE DATA IS FROM A’
PRINT X,’ STATISTICAL DISTRIRUTION ANTt WANT’
PRINT X,’ THE ZEROTH MOMENT TO EQUAL ONE,’
PRINT X,/ THEN TYPE A ONE.’
PRINT X,’ OTHERWISE, TYFE ANY OTHER NUMEER.‘
READ X,ANSWER
IF (ANSWER.EQ.1.0) THEN
PAR(S)=1,0
ENDIF
ENDIF
ENDIF
ELSE
PRINT %,‘’ TYFE MUST KE EITHER O0,1,2, OR 3.’
GO TD 999
ENDIF

(4}
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ORI KRR K SRR OKROR R OROK KRR K KOOI SKO3OIOR KKK SKKRCKCRCKORROICK G SR S Ko

XX
b $
x%
XX
xx
x%

THE INITIAL GUESS TO THE VECTOR X IS5 REAL IN,
BEFAULT VALUES ARE AVAILABLE WHICH ENSURE THE

CONVERGENCE CONDITIONS ARE SATISFIED INITIALLY

BY MAKING D' IN SUBRROUTINE CHKR GREATER THAN O.

XX
K
XK
XX
XX
XX

KRR A KKK KK A KKK KK KKK KKK KKK KKK 3K KK KKK KK K KK KK oK 3K oK KKK oK oK oK oK oK K

10

30

40

IF (GUESS.EQ.0) THEN

READ (8,%) (X(I),I=1,EQS)

ELSEIF (GUESS.EQ.1) THEN

START1=,7654321

START2=,87654321

DO 10 T=1,2%M-1,2
X(T)=START1
X(T+1)=START2
START1=8TART1~-.1
START2=START2-,1

CONTINUE

0 20 U=T,2X(M+NI-1,2
X(U)=START1
X(U+1)=8START2
START1=START1-.1
START2=8START2-.,1

CONTINUE

IO 30 VU=U,2%(Q+N)-1,2
X{V)=8TART1
X{(V+1)=START2
START1=START1-,1
START2=8TART2-.1

CONTINUE

D0 40 W=V,2%(F+Q)-1,2
X(W)=START1L
X(W+1)=8TART2
START1=53TART1-,1
START2=START2-.1

CONTINUE
ELSE

PRINT %,’ VARIARLE GUESS MUST BRE EITHER O OR 1.°

GO TO 999
ENDIF
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83
N
N
vﬁa 0K KKK ROK R RO R CKCOR SO KOCK SOKOKCK RS0 NOK KK SR SIOKK KK OIOIOK ORI KooK
o XX ¥
' KX THE INITIAL GUESS OF THE VECTOR X. IS KX
ﬁ{c XX CHECKED AGAINST THE CONVERGENCE CONDITIONS. XX
S XX XX
&‘.":; . RKRAKKK AR KKK KKK KKK KKK KKK IR KKK AR KKK KKK KKK AKKKKKH KKK
.

\;‘-'

Y CALL CHRR(EQSyMsN,P,QyX,CC)

: IF (CC.EQ.0) THEN
;:i: FPRINT X, A NEW INITIAL GUESS IS NEEDED,’

o) GO TO 999
I ENDIF
?{- FRINT X,/ THE INITIAL GUESS MEETS THE”
3y FRINT X,/ CONVERGENCE CONLITIONS,
fb} 30K KKK KKK RO KK KKK K KKK K KK KK KO K KK 30RO MK K KR KOK R KK
‘e XK XX
{u‘ a
j’- XX ZSF0OW IS AN IMSL. ROUTINE WHICH USES XX

. XX FOWELL’S METHOD TO APFROXIMATE THE KX
S XX ROOTS OF A SYSTEM OF EQUATIONS. XX
S 3 X%
$Q5 KKK K G ISR KK KKK K KK S A KKOROIRKOK KK R ROk X
ALY
ﬂQZ CaLl. ZSFOW(FCN,NSIG,EQS,ITMAX,FAR,X,FNORM, WK, IER)
xﬁ\'_

\' 0K K S0 K KKK K K KOKCKOKOK ORI KKK HOKOKROROKK OK 30 KOk
. x¥ X
3; XX THE FINAL ESTIMATE QF THIE VECTOR X IS XX
fa XX CHECKETl AGAINST THE CONVERGENCE CONDITIONS. XX
208 XX KK |

,ﬁﬁ' 30K K 20 KKK KA KK K KKK A KK KR K ORI XK |
\. CﬁLL CH'\R(EQS!M,N,F')‘G,XyCC)

"3:" IF (CC.ER.0) THEN
L3y FRINT %,’ THE FINAL ESTIMATE OF THE X VECTOR DOES”
*f} _ FRINT %X,’ NOT MEET THE CONVERGENCE CONIITIONS.”
j* GO TO 999
. ENDIF

N FRINT %, THE FINAL. ESTIMATE OF THE X VECTOR MEETS’
'{ﬂ PRINT %,’ THE CONVERGENCE CONDITIONS.’

"
5& 30K K KK K K K K K K K K KKK KKK KK KKK KK K K KKK KKK K KKK KOK s ok ook
' b 3 XX

i xXK IF THE INITIAL GUESS OF THE X VECTOR XX

:q' b 3 MEETS THE CONVERGENCE CONDITIONS, THEN b $ 4

*E? XK THE RESULTS OF ZSFOW ARE GQUTFUT TO TAlME 2. XX
o Xk : XX
‘QJ SRR O K 0 K K K K K KKK KK K 0K KRR 0K 0K KKK KK KKK KKK HOICK 0K KR KoK
)

- 998 CALL RESULT(EQS,FLAG,My,N,F,Q,XyFAR,FNORM)

o GO TO 1000
r:: 121
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KK KK K KRR K AR R RCICR K KK CKSICHCICHOR JOICHKOICK K SRR

xx *X
Xk AlLL ERRORS, EXCEFT A FINAL ESTIMATE THAT kX
X% DOES NOT MEET CONVERGENCE CONDITIONS, ARE %X
XX ROUTED TO THIS LINE WHICH ENIS THE KX
xx EXECUTION OF THE FROGRAM. XX
*X XX

20K KK KK 3K A K KK 2 3K K K KK K K KKK KKK K JOKOK KRR KIOKR KKK KKK K

999 FPRINT X,’ THE FROGRAM WILL RBE STOFFED RECAUSE
FRINT %, OF THIS ERROR.’

1000 CONTINUE
END

AR AR CKCKK KRR R OK 0K KK K KK oG EGIo Kook eiokieh eEclelooinene oo
KKK K AR K KKK KKK KK KKK KK K S0Okkok ek K e kekokock kol ackoiok kel ek ok
0K 50O K KKK OK K OKR HHRCRORCICICK R OICIOK R IR SCICK IR AR ROCKOKOR ORI O ke
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SUBEQUTINE FON(X,F JEQSPARD

ACHICR KK K AORCK KR R CCICRCOKICKAOHOICR O OKOR K KCROIOICICK ORCICK R KK KKK XK 0K K

XX X
XX THIS SUBROUTINE IS MEEDED TO DEFINE THE X%
XX SYSTEM OF NONLINEAR EQUATIONS. XX
XX L 3 3

AOKA A OK AR KK K R AR RRAOR AR K HOR K IOKOKKR KKK KKK KKK KKK K

INTEGER EQS,I,FLAG,MsNyF,Q
REAL IOFS(13),FARK(OIERS+4),F(EQS) ,,X(EQS)

FLAG=FAR(0)
M=FAR(1)
N=FAR(2)
F=FAR(3)
A=PAR(4)

CALL COMFISC(EQS,FLAGyMyN,F,Q,X,10FS)
ng 10 I=1,EQ@S,1
FCDI=(FPAR(I+4) AFAR(I+S)XIOFSCI+14FILAG) %%2) /
+ (FAR(I+S)XX2XIOFS(I+FLAG)XIOFS(I+24FLAGY) - 1.0
10 CONTINUE

RETURN
END
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e
o

o

e
R SUBROUTINF RESULT(EQS,FLAG, My Ny Qy Xy FAI, FNORM)

o

e KKK KKK 32K 3K K KK 3K K K K 3K K 3K 3K 3K K 3K 3K K 3K K K 5K KK SOH S SOK o KK oK K K kK
1 XX ) #K
‘;ﬁ XX THIS SUBROUTINE FRINTS THE SOLUTION OF KX
L XX THE SYSTEM OF NONLINEAR EQUATIONS. XK
S XX C AND K ARE VARIARLES ESTIMATED FROM X. XK

N XK *K
T KKK KKK KKK KK 3K K 3K 3K 3K 3K 3K 3 oK 3K 3K 3K 3K 0K S K K K oK oK oK 3K KK K KK KK K KK K

o, INTEGER EQSyFLAGyMyNyFyQyTyUyVyW,CHNTA,CNTR

:ﬁ; REAL IOFS(13),X(EQS) »FARCOIEGS+6) s FNORM,CoK

3R .

B3R CNTA=0

N> CNTE=0

Y WRITE(2,/(* RESULTS OF ZSFOW -*)’)

R WRITE(2,’(* NUMERATOR:*) )

SN 00 10 T=1,2%M-1,2
AN CNTE=CNTE+1

A WRITE(2, ‘(" SMALLR(® ,I1,*)=*,F25,18) )OCNTE,X(T)
1dl WRITE(2,’ (" RIGR(*,11,*)=", ~_,.1s>'>cme X(T+H1)
R 10  CONTINUE

50 00 20 U=sT,2%X(M+N)-1,2
2o CNTA=CNTA+1

o WRITE(2,’(" snﬁLLA(',Ii, )=*pF25,18) 1 ICNTA,X(U)
| WRITE(2, (" BIGAC"yI1,*)=",F25,18)/ )CNTAX(UH1)
o 20  CONTINUE

N WRITE(2, (" DENOMINATOR:®)’)

Ry N0 30 V=U,2%(Q+N)-1,2
'iQ CNTE=CNTE+1
e WRITE(2,’(* SMALLEC(®yI1,")=",F25.18) " YCNTR, X ()

. WRITE(2, (" HIGHC*,11,")="F25,18) " YONTHE, X (V+1)
e 30 CONTINUE

e D0 40 W=V, 2%(F+R)-1,2

N CNTA=CNTA+1
o WRITE(2,’ (" SMALLACY,T1,*)=",F25.18) 7 )CNTA,X (W)
®; WRITE(2,’ (" RIGAC®,I1,*)=*,F25,18) )CNTA,X(W+1)
gl 40  CONTINUE

o CALL COMFIS(EQS,FLAG,MsN»F,G,X,I10FS)

% C=(PAR(S-FLAG)XIOFS(3))/(FAR(Z7~-FLAG)XIOFS(2))

N K=PAR(4-FLAG)XCXX2/I0FS(2)
RN WRITE(2,°(/y* VALUES OF K & C ARE!*)")

o WRITE(2,‘ (" K=",F25.18) K
el WRITE(2, (" =*,F25.18))C
T WRITE(2,” (" FNORM=",F25,18,/,/) ' YFNORH
..l'.;
on RETURN
::": END
\::-.: 124
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XX
xX
XX
XX
Xk

44

10

SUBROUTINE COMPIS(ERQS FLAGyMeNyF,Qy X, T0FS)

308K R KKK K OISR OR K CIORCK OKORCRCKOROKOK KRR KK KKK R ACROR K ROk

€K
THIS SURROUTINE COMFUTES THE VECTOR I(S): %K
FRODUCTS AND QUOTIENTS OF GAMMA FUNCTIONS FOR X
A GIVEN VALUE OF S. KX
x*K

AR K K KK KK KKK KK K K KKK K ORI ACRCR R AOKOR AR KK ORI CICKRKCKOR XK X X

INTEGER EQS,FLAGyMyNsFyQyRyE:TyU,Vsl
REAL X(EQS),I0FS(13),GAMMAyBENUM, BEDEN, ANUM,ADEN

0 & R=1,13,1
IOFS(R)=0.0
CONTINUE

DO S50 3=1+FLAG,EQSH+2+FLAG,1
BNUM=1,0
BOEN=1.0
ANLIM=1.0
ATEN=1,0
ne 10 T=1,2*M‘172
BNUM=BNUMXGAMMA(X(TI+SXX(T+1))
CONTINUE
00 20 U=T,2%(M+tN)—-1,2
ANUM=ANUMKGAMMA (1 -X (W) -8%xX(U+1))
CONTINUE
[0 30 V=U,2%(Q+N)-1,2
BOEN=BIENXGAMMA (1-X (V) =-SXX(V+1))
CONTINMNUE
N0 40 W=V, 2% (F+Q)~1,2
ALEN=ADENXGAMMA (X (W) +S%kX(W+1))
CONTINUE
IOFS(S)=(BNUMXANUM) / (BLEMXADIEND
CONTINUE

RETURN
END
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SURROUTINE CHKREQSyMyN,F,Q,%X,C0C)

KKK KKK K ACROK R OK AR KK ACORCKK O3 IR KO CK K R dCRex Ok ko ok

XX A0
Xk THIS SUBRRODUTINE CHECKS THE CONVERGENCE X%
¥X CONDITIONS FOR THE INITIAL GUESS AND THE K
XK FINAL ESTIMATE OF THE X VECTOR. ¥
% k4

KK KK KK CHORACKACICK RO CR KOO KKK K KSR SOKOKCKCR R KSR KCICK KKKk Kok koK K

INTEGER CCyEQS+MsNF»QyTythyVyld

REAL SUMSEN, SUMEBEN,SUMSAN, SUMBAN, SUMSHEIN, SUMRRIT,
+ SUMSAI, SUMBAD, X(EQS) , TEST1, TEST2 y WL.OW, WH15H.,
+ EWLOW,EWHIGH, D, EyL

SUMSEN=0.0
SUMBEN=0.0
SUMSAN=0.0
SUMBAN=0.0
SUMSEL=0.0
SUMRED=0.0
SUMSAL=0.0
SUMBAD=0.0
WLOW==-10000.0
WHIGH=10000.0

no 10 T=1,2*M—1y2
SUMSBN=SUMBERN+X(T)
SUMBEN=SUMRBEN+X(T+1)
TEST1=-X(T)/X(T+1)
IF ((TESTI1-WLOW) .GY,.(,5E-5)) THEN
WLOW=TEST1
ENDIF
10 CONTINUE
00 20 U=sT,2%(MENI~-1,2
SUMSAN=SUMBAN+SX (U
SUMBAN=GUMEAN+X (U+1)
TEST2=(1-X{ ) /X(U+1)
IF ((TEST2-WHIGH) LT (=,3E-5)) THEN
WHIGH=TESTZ2 : .
ENDIF
20 CONTINUE
DO 30 V=U,2%(R+NI-1,2
SUMSED=SUMSEBD+X (V)
SUMBRO=SUMBRIHX (V+1)
30 CONTINUE
[0 40 W=V,2%X(F+Q)~1,2
SUMSAD=5UMSATI+X (W)
SUMBAL=SUMBAT+X(WLH1)
40 CONTINUE
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LAY

ae
. e .,
. e

. s DO

R R « e,

A
LN l.\.

8, Q ;

AP

o
Ca

R4

O=SUMBAN+SUMBRREN-SUMBAII-SUMERD
E=(SUMBAN+SUMRAL) - (SUMBEN+SUMEERILD
L=(SUMSERNF+SUMERIND = (L SKQA) = (SUMSAN+TEUMSATY + ¢ 5%

EWLOW=EXUWLOW
EWHIGH=EXWHIGH

IF ((WLOW-WHIGH) .LT.(=-,3SE~5)) THEN
IF (D.6T.(.SE-5)) THEN
CC=1
ELSEIF (D .LT.(~,%E-3)) THEN
CC=0
FRINT %,’ CASE 3~
ELSEIF ((ARS() LE( HE-5)) ANDL(ELT. (- BE-5)) ) THEN
IF ((L-EWLOW) LT+ (=, 8E-5)) THEN
CC=1
ELSEIF ((L-EWLOW).GT,(.5E-5)) THEN
CC=0
FRINT X,’ CASE 17
ELSE
CC=1
ENDIF
ELSEIF ((ARS(D) JLE.(.SE-9)) AND.(E.GT.(,SE-5))) THEN
IF ((L-EWHIGH) .LT.(=.SE~-5)) THEN
CC=1
ELSEIF ((L-EWI'TGH) .GT.(.S5E-5)) THEN
CC=0
PRINT %,’ CASE 27
ELSE
CC=1
ENDIF
ELSEIF ((ARS(ID JLE. (+SE-5)) +AND, (ARS(E) JLE. (,SE-5)))
THEN
IF (L .LT.(=.3E~3)) THEN
CC=1
ELSEIF (L.GT.(.SE-5)) THEN
CC=0
FRINT %, CASE 3’
ELSE
Ccc=0
FRINT %,’ CASE 4~
ENDIF .
ENDIF
ELSE
CC=0
FRINT %,’ CASE 64’
FRINT x,’ NO OMEGA IS FOSSIBLE.’
ENDIF

RETURN
END
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SURROUTINE MOMLIEQS,FLAG, NUM, I, PARD

oy
HROK A KO KRR SOK KON OR R CAOKCKCCRCR A OROR KGR OR SOk KooK ok oKz oK
XX . HH
L $ 3 THIS SUBROUTINE GENERATES THE MOMENTS FOR K¥
XX UF TO 4000 UNTVARIATE DATA FOINTS, KK
XX Xk
3K ACK 3K KK KKK K OKOK KRR KO K KOKHCKOK KRR SHOK K KGR KOIOIOR SRR AOR K OR ek

INTEGER COUNT,I,J,EQS,FLAG,NUM
REAL SUM,LEV(A000) yFAR(OIEQRS+4&)

COUNT=5

00 20 I=FLAG.EQS+I+ILAG,1
SuUM=0.0
00 10 J=1,NUM, 1
SUM=8UM+IEV (1) ¥K]T

10 CONTINUE
SUM=5UrM/NUM
FAR(COUNT ) =8UM
COUNT=COUNT+1

20 CONTINUE

RETURN
ENU

SUBROUTINE MOM3(EQS,FLAG,MUM,FATIR,DELTAX,FAR)

3K ROR K KR K ACK R KKK HORCKCH 30OKOR SORAOCK SR SRR KR OKO0KR0R KRR KRRk

xX XK
X% THIS SUBROUTINE GENERATES THE MOMENTS FOR WK
¥ XK UF TO 4000 DATA FAIRS (X,F{X)). *X
XX KK

AONCK KRR K KKK KRR AR HOK KKK ACIIOK KK R SOIOCR KRR ACKR IO K SR e Rk koK

INTEGER COUNT,I,J,EQS,FLAG, NUM
REAL SUMyFAIR(4000,2) ,DELTAX,FARCOIEQSH+S)

COUNT=S

0 20 I=FLAG,EQS+1+FLAG,1
SUM=0.0 ‘
ng 10 J=1,NU”,1
SUM=SUM+FAIR(Jy 1DXXKIXPATR(I, 2D

10 CONTINUE

SUM=SUMXIIELTAX

PAR(COUNT)Y=5UM

COUNT=COUNT+1
20 CONTINUE
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APPENDIX D
Comparison of Estimated H-function
and Actual Data
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